{"title":"增强三角分类I的Tannaka对偶性:重建","authors":"J. Pridham","doi":"10.4171/jncg/374","DOIUrl":null,"url":null,"abstract":"We develop Tannaka duality theory for dg categories. To any dg functor from a dg category $\\mathcal{A}$ to finite-dimensional complexes, we associate a dg coalgebra $C$ via a Hochschild homology construction. When the dg functor is faithful, this gives a quasi-equivalence between the derived dg categories of $\\mathcal{A}$-modules and of $C$-comodules. When $\\mathcal{A}$ is Morita fibrant (i.e. an idempotent-complete pre-triangulated category), it is thus quasi-equivalent to the derived dg category of compact $C$-comodules. We give several applications for motivic Galois groups.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tannaka duality for enhanced triangulated categories I: reconstruction\",\"authors\":\"J. Pridham\",\"doi\":\"10.4171/jncg/374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop Tannaka duality theory for dg categories. To any dg functor from a dg category $\\\\mathcal{A}$ to finite-dimensional complexes, we associate a dg coalgebra $C$ via a Hochschild homology construction. When the dg functor is faithful, this gives a quasi-equivalence between the derived dg categories of $\\\\mathcal{A}$-modules and of $C$-comodules. When $\\\\mathcal{A}$ is Morita fibrant (i.e. an idempotent-complete pre-triangulated category), it is thus quasi-equivalent to the derived dg category of compact $C$-comodules. We give several applications for motivic Galois groups.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jncg/374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tannaka duality for enhanced triangulated categories I: reconstruction
We develop Tannaka duality theory for dg categories. To any dg functor from a dg category $\mathcal{A}$ to finite-dimensional complexes, we associate a dg coalgebra $C$ via a Hochschild homology construction. When the dg functor is faithful, this gives a quasi-equivalence between the derived dg categories of $\mathcal{A}$-modules and of $C$-comodules. When $\mathcal{A}$ is Morita fibrant (i.e. an idempotent-complete pre-triangulated category), it is thus quasi-equivalent to the derived dg category of compact $C$-comodules. We give several applications for motivic Galois groups.