谱叠加的正则性与权重心的离散性

Adeel A. Khan, V. Sosnilo
{"title":"谱叠加的正则性与权重心的离散性","authors":"Adeel A. Khan, V. Sosnilo","doi":"10.1093/QMATH/HAAB017","DOIUrl":null,"url":null,"abstract":"We study regularity in the context of ring spectra and spectral stacks. Parallel to that, we construct a weight structure on the category of compact quasi-coherent sheaves on spectral quotient stacks of the form $X=[\\operatorname{Spec} R/G]$ defined over a field, where $R$ is a noetherian ${\\mathcal{E}_{\\infty}}$-$k$-algebra and $G$ is a linearly reductive group acting on $R$. In this context we show that regularity of $X$ is equivalent to regularity of $R$. We also show that if $R$ is bounded, such a stack is discrete. This result can be interpreted in terms of weight structures and suggests a general phenomenon: for a symmetric monoidal stable $\\infty$-category with a compatible bounded weight structure, the existence of an adjacent t-structure satisfying a strong boundedness condition should imply discreteness of the weight-heart. \nWe also prove a gluing result for weight structures and adjacent t-structures, in the setting of a semi-orthogonal decomposition of stable $\\infty$-categories.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Regularity of Spectral Stacks and Discreteness of Weight-Hearts\",\"authors\":\"Adeel A. Khan, V. Sosnilo\",\"doi\":\"10.1093/QMATH/HAAB017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study regularity in the context of ring spectra and spectral stacks. Parallel to that, we construct a weight structure on the category of compact quasi-coherent sheaves on spectral quotient stacks of the form $X=[\\\\operatorname{Spec} R/G]$ defined over a field, where $R$ is a noetherian ${\\\\mathcal{E}_{\\\\infty}}$-$k$-algebra and $G$ is a linearly reductive group acting on $R$. In this context we show that regularity of $X$ is equivalent to regularity of $R$. We also show that if $R$ is bounded, such a stack is discrete. This result can be interpreted in terms of weight structures and suggests a general phenomenon: for a symmetric monoidal stable $\\\\infty$-category with a compatible bounded weight structure, the existence of an adjacent t-structure satisfying a strong boundedness condition should imply discreteness of the weight-heart. \\nWe also prove a gluing result for weight structures and adjacent t-structures, in the setting of a semi-orthogonal decomposition of stable $\\\\infty$-categories.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/QMATH/HAAB017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/QMATH/HAAB017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们在环谱和谱堆的背景下研究了正则性。与此平行,我们在谱商堆栈上的紧拟相干束的范畴上构造了一个权结构,其形式为$X=[\operatorname{Spec} R/G]$,其中$R$是一个诺etherian ${\mathcal{E}_{\infty}}$ - $k$ -代数,$G$是作用于$R$的线性约化群。在这种情况下,我们证明$X$的正则性等价于$R$的正则性。我们还证明了如果$R$是有界的,那么这样的堆栈是离散的。这一结果可以用权结构来解释,并提出了一个普遍的现象:对于具有相容有界权结构的对称单轴稳定$\infty$ -类,满足强有界性条件的相邻t结构的存在应该意味着权心的离散性。我们还证明了在稳定$\infty$ -类别的半正交分解的情况下,权结构和相邻t结构的粘合结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity of Spectral Stacks and Discreteness of Weight-Hearts
We study regularity in the context of ring spectra and spectral stacks. Parallel to that, we construct a weight structure on the category of compact quasi-coherent sheaves on spectral quotient stacks of the form $X=[\operatorname{Spec} R/G]$ defined over a field, where $R$ is a noetherian ${\mathcal{E}_{\infty}}$-$k$-algebra and $G$ is a linearly reductive group acting on $R$. In this context we show that regularity of $X$ is equivalent to regularity of $R$. We also show that if $R$ is bounded, such a stack is discrete. This result can be interpreted in terms of weight structures and suggests a general phenomenon: for a symmetric monoidal stable $\infty$-category with a compatible bounded weight structure, the existence of an adjacent t-structure satisfying a strong boundedness condition should imply discreteness of the weight-heart. We also prove a gluing result for weight structures and adjacent t-structures, in the setting of a semi-orthogonal decomposition of stable $\infty$-categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信