Tannaka duality for enhanced triangulated categories I: reconstruction

J. Pridham
{"title":"Tannaka duality for enhanced triangulated categories I: reconstruction","authors":"J. Pridham","doi":"10.4171/jncg/374","DOIUrl":null,"url":null,"abstract":"We develop Tannaka duality theory for dg categories. To any dg functor from a dg category $\\mathcal{A}$ to finite-dimensional complexes, we associate a dg coalgebra $C$ via a Hochschild homology construction. When the dg functor is faithful, this gives a quasi-equivalence between the derived dg categories of $\\mathcal{A}$-modules and of $C$-comodules. When $\\mathcal{A}$ is Morita fibrant (i.e. an idempotent-complete pre-triangulated category), it is thus quasi-equivalent to the derived dg category of compact $C$-comodules. We give several applications for motivic Galois groups.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jncg/374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We develop Tannaka duality theory for dg categories. To any dg functor from a dg category $\mathcal{A}$ to finite-dimensional complexes, we associate a dg coalgebra $C$ via a Hochschild homology construction. When the dg functor is faithful, this gives a quasi-equivalence between the derived dg categories of $\mathcal{A}$-modules and of $C$-comodules. When $\mathcal{A}$ is Morita fibrant (i.e. an idempotent-complete pre-triangulated category), it is thus quasi-equivalent to the derived dg category of compact $C$-comodules. We give several applications for motivic Galois groups.
增强三角分类I的Tannaka对偶性:重建
我们发展了dg范畴的Tannaka对偶理论。对于有限维复形中的任意dg函子,我们通过一个Hochschild同调构造关联了一个dg协代数C$。当dg函子是忠实的,这给出了$\mathcal{a}$-模和$C$-模的派生的dg范畴之间的拟等价。当$\mathcal{A}$是Morita纤维(即一个幂等完备的预三角化范畴)时,它因此拟等价于紧模$C$-的派生dg范畴。我们给出了动机伽罗瓦群的几种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信