Groups with Spanier-Whitehead Duality

Shintaro Nishikawa, Valerio Proietti
{"title":"Groups with Spanier-Whitehead Duality","authors":"Shintaro Nishikawa, Valerio Proietti","doi":"10.14760/OWP-2019-23","DOIUrl":null,"url":null,"abstract":"We introduce the notion of Spanier-Whitehead K-duality for a discrete group G, defined as duality in the KK-category between two C*-algebras which are naturally attached to the group, namely the reduced group C*-algebra and the crossed product for the group action on the universal example for proper actions. We compare this notion to the Baum-Connes conjecture by constructing duality classes based on two methods: the standard \"gamma element\" technique, and the more recent approach via cycles with property gamma. As a result of our analysis, we prove Spanier-Whitehead duality for a large class of groups, including Bieberbach's space groups, groups acting on trees, and lattices in Lorentz groups.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14760/OWP-2019-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We introduce the notion of Spanier-Whitehead K-duality for a discrete group G, defined as duality in the KK-category between two C*-algebras which are naturally attached to the group, namely the reduced group C*-algebra and the crossed product for the group action on the universal example for proper actions. We compare this notion to the Baum-Connes conjecture by constructing duality classes based on two methods: the standard "gamma element" technique, and the more recent approach via cycles with property gamma. As a result of our analysis, we prove Spanier-Whitehead duality for a large class of groups, including Bieberbach's space groups, groups acting on trees, and lattices in Lorentz groups.
具有西班牙-怀特黑德二元性的群体
我们引入离散群G的西班牙-怀特海德k -对偶性的概念,定义为在k -范畴中自然附属于群的两个C*-代数之间的对偶性,即约简群C*-代数和群作用在固有作用的普遍例子上的交叉积。我们将这个概念与Baum-Connes猜想进行比较,方法是基于两种方法构造对偶类:标准的“伽马元素”技术,以及最近通过具有伽马属性的循环的方法。作为分析的结果,我们证明了一大类群的西班牙-怀特海德对偶性,包括比伯巴赫空间群、作用于树的群和洛伦兹群中的格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信