The tangent complex of K-theory

Benjamin Hennion
{"title":"The tangent complex of K-theory","authors":"Benjamin Hennion","doi":"10.5802/JEP.161","DOIUrl":null,"url":null,"abstract":"We prove that the tangent complex of K-theory, in terms of (abelian) deformation problems over a characteristic 0 field k, is cyclic homology (over k). This equivalence is compatible with the $\\lambda$-operations. In particular, the relative algebraic K-theory functor fully determines the absolute cyclic homology over any field k of characteristic 0. \nWe also show that the Loday-Quillen-Tsygan generalized trace comes as the tangent morphism of the canonical map $BGL_\\infty \\to K$. \nThe proof builds on results of Goodwillie, using Wodzicki's excision for cyclic homology and formal deformation theory a la Lurie-Pridham.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/JEP.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the tangent complex of K-theory, in terms of (abelian) deformation problems over a characteristic 0 field k, is cyclic homology (over k). This equivalence is compatible with the $\lambda$-operations. In particular, the relative algebraic K-theory functor fully determines the absolute cyclic homology over any field k of characteristic 0. We also show that the Loday-Quillen-Tsygan generalized trace comes as the tangent morphism of the canonical map $BGL_\infty \to K$. The proof builds on results of Goodwillie, using Wodzicki's excision for cyclic homology and formal deformation theory a la Lurie-Pridham.
k理论的正切复合体
我们证明了在特征0场k上的(阿贝尔)变形问题中,k理论的切复是循环同调的(在k上)。这个等价与$\lambda$ -运算相容。特别是,相对代数k -理论函子完全确定了特征为0的任意域k上的绝对循环同调。我们还证明Loday-Quillen-Tsygan广义迹是规范映射$BGL_\infty \to K$的切态射。这个证明建立在Goodwillie的结果之上,使用了Wodzicki对循环同调的剔除和Lurie-Pridham的形式变形理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信