Soon-Kyu Kwon , Jun-Nyeong Kim , Hyung-Gi Byun , Hyeon-June Kim
{"title":"Low-power and cost-effective readout circuit design for compact semiconductor gas sensor systems","authors":"Soon-Kyu Kwon , Jun-Nyeong Kim , Hyung-Gi Byun , Hyeon-June Kim","doi":"10.1016/j.elecom.2024.107834","DOIUrl":"10.1016/j.elecom.2024.107834","url":null,"abstract":"<div><div>This study introduces a novel readout circuit architecture that enhances semiconductor gas sensor systems by reducing power consumption, enabling miniaturization, and improving economic viability. Validated at the PCB level, the design shows strong commercial potential by addressing power efficiency and signal accuracy challenges. The technology is adaptable for applications in environmental monitoring, industrial safety, and medical diagnostics, where efficient and reliable gas sensing is essential.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"169 ","pages":"Article 107834"},"PeriodicalIF":4.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saira Kausar , Maria Yousaf , Sadullah Mir , Nasser S. Awwad , Huriyyah A. Alturaifi , Farhan Riaz
{"title":"Mesoporous Materials: Synthesis and electrochemical applications","authors":"Saira Kausar , Maria Yousaf , Sadullah Mir , Nasser S. Awwad , Huriyyah A. Alturaifi , Farhan Riaz","doi":"10.1016/j.elecom.2024.107836","DOIUrl":"10.1016/j.elecom.2024.107836","url":null,"abstract":"<div><div>Mesoporous materials are the epicentre of numerous scientific innovations with tunable pore size and extensive surface area, harnessing their potential in multiple fields such as electrocatalysis, photocatalysis, and environmental remediation. This review offers a detailed overview of diverse categories, synthesis methods, and various applications of mesoporous materials. Distinct categories of porous materials are thoroughly analyzed, featuring mesoporous silica, ordered mesoporous carbon, mesoporous MOFs, mesoporous metals, and metal oxides. Moreover, different synthesis techniques are explored in this review such as template-assisted methods employing hard and soft templates, sol–gel processing, hydrothermal, and microwave-assisted synthesis showcasing their role in the development of materials with tailored properties. Furthermore, this review delves into numerous applications of mesoporous materials, including their role in energy storage devices, photocatalysis, water splitting for fuel production, environmental remediation, sensing, adsorption, and desalination techniques like capacitive deionization for the treatment of brackish water. This review distinguishes itself by providing a thorough analysis of mesoporous materials, equipped with tables, figures, and diagrams for better understanding, and highlights the significant influence of mesoporous materials on contemporary science and technology.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"169 ","pages":"Article 107836"},"PeriodicalIF":4.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142703728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kwang-Mo Kang , Seok-Han Lee , Sang-Youn Kim , Yoon-Chae Nah
{"title":"Fabrication of patterned TiO2 nanotube layers utilizing a 3D printer platform and their electrochromic properties","authors":"Kwang-Mo Kang , Seok-Han Lee , Sang-Youn Kim , Yoon-Chae Nah","doi":"10.1016/j.elecom.2024.107833","DOIUrl":"10.1016/j.elecom.2024.107833","url":null,"abstract":"<div><div>Anodization enables nano-structure fabrication through electrochemical parameter control. While various approaches exist for creating localized or patterned oxide layers, many are complex and time-consuming. This study adopted a commercial 3D printer for high-speed (1 mm/s) anodization, forming TiO<sub>2</sub> nanotube layers on Ti substrates in G-code-designed patterns. Comprehensive characterization using XRD, SEM, XPS, and simulated electric field distribution analysis revealed well-defined nanostructures and provided insights into the formation mechanism. Furthermore, viologen-anchored TiO<sub>2</sub> showed significantly improved electrochromic performance compared to pristine TiO<sub>2</sub>, with a higher reflectance difference (46.2% vs. 6.85%). This 3D printing-anodization hybrid method offers a rapid approach to fabricating patterned TiO<sub>2</sub> nanostructures, showing promise for electrochromic devices with enhanced optical modulation capabilities.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"169 ","pages":"Article 107833"},"PeriodicalIF":4.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wirefree Electrochemistry for Enhanced Detection and Treatment of Disease","authors":"Oisín Foley Doyle , Robert J. Forster","doi":"10.1016/j.elecom.2024.107832","DOIUrl":"10.1016/j.elecom.2024.107832","url":null,"abstract":"<div><div>Wirefree, or bipolar electrochemistry, BPE, has the potential to transform patient outcomes through early diagnosis using ultrasensitive sensors for multiple biomarkers and personalised treatments such as enhanced cell growth, differentiation and destruction as well as local delivery of therapeutics. We highlight the emerging field of wirefree electroceuticals and show how BPE could enable precise modulation of neural circuits, non-pharmaceutical therapies for conditions like Parkinson’s disease and chronic pain management, as well as on-demand drug delivery with high spatial and temporal precision. Moreover, it explores the integration of advanced nanomaterials illustrating their pivotal role in enhancing electrode performance and biocompatibility, thereby maximising their potential diagnostic and therapeutic efficacy especially <em>in vivo</em>.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"169 ","pages":"Article 107832"},"PeriodicalIF":4.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dominik Venus , Moritz Valeske , Matthew Brodt , Peter Wasserscheid , Simon Thiele
{"title":"The influence of acetone and isopropanol crossover on the direct isopropanol fuel cell","authors":"Dominik Venus , Moritz Valeske , Matthew Brodt , Peter Wasserscheid , Simon Thiele","doi":"10.1016/j.elecom.2024.107823","DOIUrl":"10.1016/j.elecom.2024.107823","url":null,"abstract":"<div><div>Liquid organic hydrogen carriers (LOHC) offer a promising option to store and release hydrogen on demand within existing infrastructure. The direct isopropanol fuel cell (DIFC) uses the electrochemical acetone/isopropanol LOHC couple and combines the advantages of high fuel energy density at ambient conditions with CO<sub>2</sub>-free direct electricity production. Like other alcohol fuel cells, the DIFC combines two kinetically slow reactions, the isopropanol oxidation reaction (IOR) and the oxygen reduction reaction (ORR), requiring considerable overpotentials to drive the reactions. Accordingly, deconvoluting kinetic characteristics in the full cell is difficult. Therefore, this work uses the electrolytic electrochemical dehydrogenation unit (EDU), consisting of the IOR and the kinetically fast hydrogen evolution reaction in acidic media. This EDU then serves as an IOR full-cell model to get insights on the DIFC. Correspondingly, the demonstrated work is a comparison study investigating in-house fabricated catalyst-coated membrane electrode assemblies as hydrogen fuel cells, DIFC, and EDU. It investigates characteristic features of the DIFC and demonstrates how the acetone and isopropanol crossover affect the cathode of the DIFC.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"169 ","pages":"Article 107823"},"PeriodicalIF":4.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Afsaneh Ahmadi , Mohammad Chahkandi , Mahboobeh Zargazi , Jin Suk Chung
{"title":"Highly enhanced electrocatalytic OER with facile electrodeposition of MIL–53(Fe)/NiAl–LDH/NF and NiAl–LDH/MIL–53(Fe)/NF","authors":"Afsaneh Ahmadi , Mohammad Chahkandi , Mahboobeh Zargazi , Jin Suk Chung","doi":"10.1016/j.elecom.2024.107825","DOIUrl":"10.1016/j.elecom.2024.107825","url":null,"abstract":"<div><div>This research investigates a new approach to improve the electrocatalytic rate of the Oxygen Evolution Reaction (OER), a key step in water electrolysis. The study focuses on two promising materials: MIL–53(Fe) and NiAl–LDH. MIL–53(Fe) offers several advantages: high catalytic activity, large surface area, and good chemical stability. NiAl–LDH is attractive due to its layered structure, tolerance to a wide range of pH levels, scalability, and cost-effectiveness. However, their limitations like low conductivity and restricted accessibility of active sites hinder their performance in water splitting applications. To address these limitations, novel composite thin films were created using a technique called layer–by–layer (LBL) electrophoretic deposition. These films, built on nickel foam (NF) substrates, included two configurations: MIL–53(Fe)/NiAl–LDH/NF and NiAl–LDH/MIL–53(Fe)/NF. The MIL-53(Fe)/NiAl-LDH/NF composite exhibited remarkable OER activity in alkaline electrolytes, requiring overpotentials of only 200, 270, and 370 <em>mV</em> to reach current densities of 20, 50, and 100 mA <em>cm<sup>−2</sup></em>, respectively. The Tafel slope of 54.86 <em>mVdec<sup>−1</sup></em> suggests rapid reaction kinetics. Additionally, it demonstrated excellent long-term stability, lasting for at least 20 h. The success of the MIL–53(Fe)/NiAl–LDH/NF composite can be attributed to the LBL technique. This method creates a composite with a larger surface area, significantly improving OER efficiency. In contrast, the MIL–53(Fe)/NiAl–LDH/NF configuration had the opposite effect. The NF pores became blocked by the MIL–53(Fe) layer, reducing the overall surface area, hindering electron transfer, and thereby limiting oxygen production. The LBL deposition method used in this study proves its effectiveness in designing efficient electrocatalysts. This opens up possibilities for creating other multicomponent materials for energy applications. The findings provide valuable insights for future research on these promising composite materials, potentially leading to the development of cost-effective and high-performance catalysts for various electrochemical applications.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"168 ","pages":"Article 107825"},"PeriodicalIF":4.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Somayeh Tajik , Hadi Beitollahi , Fariba Garkani Nejad
{"title":"Novel and simple electrochemical sensing platform based on polypyrrole nanotubes/ZIF-67 nanocomposite/screen printed graphite electrode for sensitive determination of metronidazole","authors":"Somayeh Tajik , Hadi Beitollahi , Fariba Garkani Nejad","doi":"10.1016/j.elecom.2024.107824","DOIUrl":"10.1016/j.elecom.2024.107824","url":null,"abstract":"<div><div>Here, a simple, fast, and sensitive voltammetric sensor based on screen printed graphite electrode (SPGE) modified with polypyrrole nanotubes/zeolitic imidazolate framework-67 (PPy NTs/ZIF-67) nanocomposite is introduced for the metronidazole (MNZ) determination. The PPy NTs/ZIF-67 nanocomposite was synthesized and characterized by using X-ray diffraction (XRD) spectroscopy, field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS) techniques. The developed sensor based on PPy NTs-ZIF-67 nanocomposite modified SPGE shows an obvious reduction peak at −650 mV for MNZ, mainly due to the synergistic effects of the ZIF-67 and PPy NTs. Differential pulse voltammetry (DPV) was found to be the most suitable method for MNZ detection, showing a linear dynamic range of 0.01–500.0 µM and a low limit of detection (LOD) of 0.004 µM. In investigating the practicability, the PPy NTs/ZIF-67/SPGE sensor demonstrated efficient practicability with satisfactory recoveries (97.1 % to 103.5 %) and low relative standard deviation (RSD) values of 1.8–3.6 % for MNZ determination in MNZ tablets and urine samples.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"169 ","pages":"Article 107824"},"PeriodicalIF":4.7,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emer B. Farrell, Gareth Redmond, Robert P. Johnson
{"title":"Monitoring spirooxazine–merocyanine photoisomerization with ion-current rectifying quartz nanopipettes","authors":"Emer B. Farrell, Gareth Redmond, Robert P. Johnson","doi":"10.1016/j.elecom.2024.107820","DOIUrl":"10.1016/j.elecom.2024.107820","url":null,"abstract":"<div><div>The characterization and discrimination of chemical compounds is imperative in both academia and industry, but currently relies on expensive and/or bulky instrumentation. Herein, we demonstrate that the ion transport properties of bare quartz nanopipettes containing aprotic acetonitrile electrolyte can be used discriminate isomers based on polarization and solvation, through changes to interfacial solvent ordering at the nanopore wall. This is demonstrated by monitoring the photoinduced isomerization of spirooxazine to merocyanine using the ion-current rectification of a quartz-nanopipette containing acetonitrile electrolyte, which results in an increase in rectification ratio (RR) from 3.6 ± 0.3 to 5.1 ± 0.2. This change is comparable to traditional UV–Vis absorbance and fluorescence measurements of the same process, with the appearance of a small shoulder-like absorbance peak from 400 to 500 nm, and a strong fluorescence signal at 430 nm.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"168 ","pages":"Article 107820"},"PeriodicalIF":4.7,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reece Goldsberry , Ulises Martin , Brooke Bond , Evelyn Callaway , Homero Castaneda , Arul Jayaraman
{"title":"Applicability of microcapillary electrochemical droplet cell for monitoring microbiologically induced corrosion","authors":"Reece Goldsberry , Ulises Martin , Brooke Bond , Evelyn Callaway , Homero Castaneda , Arul Jayaraman","doi":"10.1016/j.elecom.2024.107822","DOIUrl":"10.1016/j.elecom.2024.107822","url":null,"abstract":"<div><div>Formed biofilms can induce corrosion of metallic substrates through the secretion of corrosive chemical species, changes in local acidity, and the creation of galvanic oxygen concentration cells. Electrochemical testing is useful to study and monitor the growth of biofilms on metallic substrates. Macroelectrochemical testing gives an average measurement of all the chemical interactions and processes in the sampled area which is typically on the mm<sup>2</sup> to cm<sup>2</sup> scale. Microcapillary electrochemical droplet cell testing can perform AC and DC electrochemical measurements on the µm<sup>2</sup> scale, allowing measurements of local electrochemical processes in the picoampere range. Adapting this technique for use in studying microbiologically induced corrosion could provide high-resolution in-situ characterization of biofilm growth. Low alloy steel coupons were subjected to macro- and microelectrochemical techniques to characterize the influence of microbiological entities on the corrosion process.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"168 ","pages":"Article 107822"},"PeriodicalIF":4.7,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chanyuan Huo , Andrea Vezzoli , Natasa Vasiljevic , Walther Schwarzacher
{"title":"Halide adsorption influences snapback distance in Scanning Tunnelling Microscope break junctions","authors":"Chanyuan Huo , Andrea Vezzoli , Natasa Vasiljevic , Walther Schwarzacher","doi":"10.1016/j.elecom.2024.107821","DOIUrl":"10.1016/j.elecom.2024.107821","url":null,"abstract":"<div><div>‘Snapback distance’ refers to the rapid increase in the size of the gap formed immediately after breaking an atomic-scale metallic contact. It is a commonly observed phenomenon in Scanning Tunnelling Microscope break junction (STM-BJ) and mechanically controlled break junction (MCBJ) experiments. Here, we show that the snapback distance measured for a gold break junction in pure water was significantly reduced in an electrolyte containing halide anions. In the case of Br<sup>−</sup>, experiments under electrochemical control provided clear evidence that this reduction was caused by halide adsorption on the surface of the gold.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"168 ","pages":"Article 107821"},"PeriodicalIF":4.7,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}