Jonas Mart Linge , Xiang Lyu , Heiki Erikson , Lynda Amichi , David A. Cullen , Kaido Tammeveski , Alexey Serov
{"title":"Unsupported and carbon-supported silver catalysts for oxygen reduction reaction in alkaline media","authors":"Jonas Mart Linge , Xiang Lyu , Heiki Erikson , Lynda Amichi , David A. Cullen , Kaido Tammeveski , Alexey Serov","doi":"10.1016/j.elecom.2025.107991","DOIUrl":null,"url":null,"abstract":"<div><div>Quick and easy Ag catalysts preparation via wet chemical synthesis method using only reducing agent (pure-Ag); reducing agent and citric acid as the capping agent (Ag-CA); and carbon support (KetjenBlack 600J), capping agent, and the reducing agent (Ag/C) is demonstrated. The Ag-based electrocatalysts are characterized by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) with energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activity of Ag catalysts for O<sub>2</sub> reduction reaction (ORR) in 1 M KOH is evaluated using the rotating (ring)-disc electrode method. SEM and HAADF-STEM results show that the unsupported pure-Ag and Ag-CA catalysts consist mainly of big agglomerates, and Ag/C has the smallest agglomerates and some sub-3 nm Ag nanoparticles. The XPS results reveal that Ag in all the catalysts is in the metallic form (Ag<sup>0</sup>). Despite consisting of big agglomerates, the Ag-CA catalyst exhibits similar ORR electrocatalytic activity to that of Ag/C. Ag-CA (unsupported) shows the lowest hydrogen peroxide yield. These results are of great importance for the development of Ag-based catalysts that can be prepared in a fast, simple and easily up scalable fashion, for anion exchange membrane fuel cells.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"178 ","pages":"Article 107991"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125001304","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Quick and easy Ag catalysts preparation via wet chemical synthesis method using only reducing agent (pure-Ag); reducing agent and citric acid as the capping agent (Ag-CA); and carbon support (KetjenBlack 600J), capping agent, and the reducing agent (Ag/C) is demonstrated. The Ag-based electrocatalysts are characterized by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) with energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activity of Ag catalysts for O2 reduction reaction (ORR) in 1 M KOH is evaluated using the rotating (ring)-disc electrode method. SEM and HAADF-STEM results show that the unsupported pure-Ag and Ag-CA catalysts consist mainly of big agglomerates, and Ag/C has the smallest agglomerates and some sub-3 nm Ag nanoparticles. The XPS results reveal that Ag in all the catalysts is in the metallic form (Ag0). Despite consisting of big agglomerates, the Ag-CA catalyst exhibits similar ORR electrocatalytic activity to that of Ag/C. Ag-CA (unsupported) shows the lowest hydrogen peroxide yield. These results are of great importance for the development of Ag-based catalysts that can be prepared in a fast, simple and easily up scalable fashion, for anion exchange membrane fuel cells.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.