Zichen Zhang , Jianbang Ge , Biwu Cai , Yang Gao , Zhihao Cheng , Shun Cao , Shuqiang Jiao
{"title":"Revisiting the natural convection effects at ultra-low redox concentration solutions: The influence of viscosity and diameter of wire electrode","authors":"Zichen Zhang , Jianbang Ge , Biwu Cai , Yang Gao , Zhihao Cheng , Shun Cao , Shuqiang Jiao","doi":"10.1016/j.elecom.2024.107808","DOIUrl":"10.1016/j.elecom.2024.107808","url":null,"abstract":"<div><p>Natural convection could arise even at ultra-low redox concentration solutions (1–10 mM). Models such as convection–diffusion layer model and spontaneous convection model have been established to describe this phenomenon. However, the driving forces as well as the parameters that influence this natural convection effects are still not clear. Herein we investigated the effects of viscosity on natural convection by introducing sodium alginate (SA), which enhanced viscosity without changing the diffusion coefficient of the redox couple. Resultantly, it allowed us to obtain the relationship between microscopic flow of solutions and the thickness of natural convection layer. Moreover, wire electrodes with various diameters were also tested to reveal the natural convection effects on mass transfer. An empirical equation was established to describing the influences of solution viscosity and diameter of wire electrode on the thickness of natural convection layer in ultra-low redox concentration solutions.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"168 ","pages":"Article 107808"},"PeriodicalIF":4.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001516/pdfft?md5=ba0b8e3b61e82fece7cbfa21b163c1cd&pid=1-s2.0-S1388248124001516-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shumaila Razzaque, Alla Dyachenko, Aimen Waqar, Katarzyna Dusilo, Marcin Opallo
{"title":"Electrocatalytic oxygen reduction at non-metalated and pyrolysis free hypercrosslinked polymers","authors":"Shumaila Razzaque, Alla Dyachenko, Aimen Waqar, Katarzyna Dusilo, Marcin Opallo","doi":"10.1016/j.elecom.2024.107800","DOIUrl":"10.1016/j.elecom.2024.107800","url":null,"abstract":"<div><p>Oxygen reduction is one of the core steps of non-emissive zero carbon energy conversion. Therefore, enhancement of its sluggish kinetics is extremely important. Very recently researchers focused on oxygen electrocatalysis at porous polymers. Here we applied the non-metalated and pyrolysis free hypercrosslinked polymers with high specific surface area and abundant active sites. Electrode modified with the copolymer prepared from the twisted triphenylbenzene and N containing triphenyl amine exhibits electrocatalytic ORR in alkaline medium. Tafel slope value (0.067 V dec<sup>−1</sup>) indicates the efficient electrocatalytic activity and fast reaction kinetics. The lack of H<sub>2</sub>O<sub>2</sub> product detected by scanning electrochemical microscopy suggests 4-electron path. The electrocatalytic activity of electrodes modified with hypercrosslinked polymers prepared from single monomers is also seen.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"167 ","pages":"Article 107800"},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001437/pdfft?md5=c18791a9a038a0ceddd2697603d87805&pid=1-s2.0-S1388248124001437-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A spray coated high performing metal-free onion-like carbon supercapacitor for sustainable energy storage","authors":"T. Neff , A. Krueger","doi":"10.1016/j.elecom.2024.107798","DOIUrl":"10.1016/j.elecom.2024.107798","url":null,"abstract":"<div><p>Supercapacitors will play a crucial role in the future energy landscape due to their high power density and extended cycle stability. However, energy density tends to be relatively low, partly because of conventional heavy current collectors, also posing sustainability issues. It is crucial to integrate lightweight, flexible current collectors and environmentally friendly active materials while maintaining the performance of the supercapacitor. Here we report on a metal-free supercapacitor using a carbon paper current collector and onion like carbon (OLC). The electrodes were fabricated through a scalable and flexible spray-coating process using onion-like carbon ink. Higher capacitances were observed for the paper-based electrode (24.1 F/g, 34.9 mF/cm<sup>2</sup>) compared to 22.5 F/g (31.5 mF/cm<sup>2</sup>) for aluminium collectors at scanrates of 2.5 mV/s over a voltage window of 2.5 V. At elevated scanrates of 100 mV/s–5 V/s, the actual operating window of a supercapacitor, the paper-based electrode offers a significantly enhanced performance. Stability tests demonstrated a capacitive retention of 98 % for both electrodes after 10,000 cycles. The utilization of onion-like carbon as the active material and a paper-based current collector enables the development of a fully carbon-based supercapacitor system, without compromising its electrochemical performance. This approach introduces a metal-free OLC supercapacitor and promotes environmental sustainability by reducing the dependence on conventional metal-based components and provides a more resource-efficient solution to address the energy storage needs.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"167 ","pages":"Article 107798"},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001413/pdfft?md5=afd807327e868bfdc25a0d9e90e5c5f0&pid=1-s2.0-S1388248124001413-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stephanie E. Wolf , Vaibhav Vibhu , Pritam K. Chakraborty , Shibabrata Basak , Izaak C. Vinke , L.G.J. (Bert) de Haart , Rüdiger-A. Eichel
{"title":"Long-term electrochemical characterization of novel Sr2FeMo0.65Ni0.35O6−δ fuel electrode for high-temperature steam electrolysis in solid oxide cells","authors":"Stephanie E. Wolf , Vaibhav Vibhu , Pritam K. Chakraborty , Shibabrata Basak , Izaak C. Vinke , L.G.J. (Bert) de Haart , Rüdiger-A. Eichel","doi":"10.1016/j.elecom.2024.107799","DOIUrl":"10.1016/j.elecom.2024.107799","url":null,"abstract":"<div><p>The present study focuses on the highly catalytic double-perovskite Sr<sub>2</sub>FeMo<sub>0.65</sub>Ni<sub>0.35</sub>O<sub>6−δ</sub> (SFMNi) fuel electrode material for Solid Oxide Electrolysis Cells (SOECs). The electrolyte-supported single button cells with the highly active SFMNi fuel electrode were electrochemically characterized between 900 °C down to 750 °C in steam and co-electrolysis conditions using DC- and AC-techniques. The cells achieved current densities of −1.62 A cm<sup>−2</sup> and −1.74 A cm<sup>−2</sup> at 900 °C under steam and co-electrolysis conditions, respectively, exceeding the performance of cells with Ni-8YSZ fuel electrodes by ∼65–79 % and Ni-GDC fuel electrodes by 24–28 %. The post-test SEM-EDX analyses of the as-prepared and tested cells’ cross-section showed increased pore formation and particle growth of the SFMNi fuel electrode after testing in the humidified atmosphere for 500 h.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"167 ","pages":"Article 107799"},"PeriodicalIF":4.7,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001425/pdfft?md5=496966460028e72da99245cef877861c&pid=1-s2.0-S1388248124001425-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Remediation of shuttle effect in a Li-sulfur battery via a catalytic pseudo-8-electron redox reaction at the sulfur cathode","authors":"Dantong Qiu, Huainan Qu, Dong Zheng, Xiaoxiao Zhang, Deyang Qu","doi":"10.1016/j.elecom.2024.107797","DOIUrl":"10.1016/j.elecom.2024.107797","url":null,"abstract":"<div><p>A catalytic pseudo-8-electron redox reaction of sulfur is achieved by facilitating the disproportionation of high-order polysulfide ions in a Li-Sulfur battery. Electrochemically generated polysulfide ions (S<sub>x</sub><sup>2-</sup>, where 3 < x < 7) undergo rapid disproportionation into elemental sulfur (S<sub>8</sub>) and Li<sub>2</sub>S<sub>2</sub>, catalyzed by a bifunctional carbon host/catalyst. The overall catalytic redox reaction at the sulfur cathode is represented as <span><math><mrow><msub><mi>S</mi><mn>8</mn></msub><mo>+</mo><msup><mrow><mn>8</mn><mi>L</mi><mi>i</mi></mrow><mo>+</mo></msup><mo>+</mo><mn>8</mn><mi>e</mi><mo>⇌</mo><msub><mrow><mn>4</mn><mi>L</mi><mi>i</mi></mrow><mn>2</mn></msub><msub><mi>S</mi><mn>2</mn></msub></mrow></math></span>. In contrast to physical or chemical confinement methods for polysulfide ions, this approach remediates the shuttle effect by swiftly converting soluble polysulfides in the electrolyte to elemental sulfur and insoluble Li<sub>2</sub>S<sub>2</sub> within the cathode matrix. As a result, the adverse chemical interaction between dissolved polysulfides and the Li anode is mitigated.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"167 ","pages":"Article 107797"},"PeriodicalIF":4.7,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001401/pdfft?md5=cc77affa7850ff5b0ffee23757edfd90&pid=1-s2.0-S1388248124001401-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advanced electrocatalytic performance of the configuration entropy cobalt-free Bi0.5Sr0.5FeO3–δ cathode catalysts for solid oxide fuel cells","authors":"Shichao Zhang, Qiang Li, Liping Sun, Hui Zhao","doi":"10.1016/j.elecom.2024.107795","DOIUrl":"10.1016/j.elecom.2024.107795","url":null,"abstract":"<div><p>The medium-entropy perovskite oxide Bi<sub>0.5</sub>Sr<sub>0.5</sub>Fe<sub>0.85</sub>Nb<sub>0.05</sub>Ta<sub>0.05</sub>Sb<sub>0.05</sub>O<sub>3–</sub><em><sub>δ</sub></em> (BSFNTS) is evaluated as a potential cathode catalyst for solid oxide fuel cells (SOFCs). The crystal structure, electrocatalytic activity, oxygen reduction kinetics, and CO<sub>2</sub> tolerance are systematically investigated. At 700 °C, the BSFNTS cathode exhibits excellent electrochemical performance with a polarization resistance as low as 0.095 Ω cm<sup>2</sup>. The maximal power density of the fuel cell with the BSFNTS cathode is 900 mW cm<sup>−2</sup>. Furthermore, the rate control step for the oxygen reduction reaction (ORR) of the electrode is primarily identified as the adsorbed and diffusion process of the molecule oxygen. The BSFNTS electrode presents excellent CO<sub>2</sub> tolerance and durability in a CO<sub>2</sub>-containing atmosphere, which is related to the high acidity of Bi, Nb, Ta, and Sb cations and the larger average bonding energy of BSFNTS. The preliminary results indicate that BSFNTS medium-entropy oxide is an attractive cathode electrocatalyst for SOFCs.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"167 ","pages":"Article 107795"},"PeriodicalIF":4.7,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001383/pdfft?md5=aea0ca4e15480e99e282a5004080971a&pid=1-s2.0-S1388248124001383-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142058152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xu Bi , Xiaotong Guo , Wencheng Song , Dandan Shi , Shuyue Tan , Youzheng Sun , Weiye Zhang , Hao Kang , Yanyan Li , Han Dai , Junfeng Zhao
{"title":"Relatively low temperature defluorination and carbon coating in CFx by dimethyl silicone oil/polyethylene glycol for enhancing performance of lithium primary battery","authors":"Xu Bi , Xiaotong Guo , Wencheng Song , Dandan Shi , Shuyue Tan , Youzheng Sun , Weiye Zhang , Hao Kang , Yanyan Li , Han Dai , Junfeng Zhao","doi":"10.1016/j.elecom.2024.107796","DOIUrl":"10.1016/j.elecom.2024.107796","url":null,"abstract":"<div><p>Because of the presence of electrochemically inactive C-F<sub>2</sub> bond and poor electronic conductivity of C-F, the discharge performance of lithium fluorocarbon (Li/CF<sub>x</sub>) batteries is limited, despite their extensive use in commercial fields. In this study, dimethyl silicone oil/polyethylene glycol was adopted to improve the performance of CF<sub>x</sub> through relatively low temperature (350 °C) defluorination and carbon coating. The uniform mixing of dimethyl silicone oil with CF<sub>x</sub> and the subsequent gas–solid reaction enables mild defluorination, transforming C-F<sub>2</sub> into semi-ionic C-F with high conductivity. Furthermore, this dimethyl silicone oil/ polyethylene glycol treated CF<sub>x</sub> under 350 °C prevent the thermal decomposition of C-F during both of the defluorination and carbon coating process, resulting in improving the electrical performance and capacity protection of CF<sub>x</sub>. Specifically, the modified CF<sub>x</sub> cathode exhibits a 2.7 V discharge platform, a discharge capacity of 859.1 mAh/g and the energy density of 1889.7 Wh kg<sup>−1</sup> at 0.01C. This approach allows for large scale adjustments of CF<sub>x</sub> with excellent performance, making it easy to industrialization.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"167 ","pages":"Article 107796"},"PeriodicalIF":4.7,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001395/pdfft?md5=3fdf55572417d0f8e4e69bdd038cd7f1&pid=1-s2.0-S1388248124001395-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142058153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Susanta Bera , Rutger van der Breggen , Pramod Patil Kunturu, Stefan Welzel, Mihalis N. Tsampas
{"title":"Electrocatalytic nitrogen reduction in continuous-flow cell via water oxidation at ambient conditions: Promising for ammonia or diazene?","authors":"Susanta Bera , Rutger van der Breggen , Pramod Patil Kunturu, Stefan Welzel, Mihalis N. Tsampas","doi":"10.1016/j.elecom.2024.107794","DOIUrl":"10.1016/j.elecom.2024.107794","url":null,"abstract":"<div><p>Electrochemical nitrogen reduction reaction (eNRR) is recognized as an alternative green approach to the traditional energy-demanding and fossil-based catalytic processes (e.g. Haber Bosch). In this study, we implement eNRR in a proton exchange membrane (PEM) water electrolyzer in which nitrogen (N<sub>2</sub>) is fed in the cathode. This operation mode has been suggested as a way to overcome mass transfer limitations, however, there is a lack of developed evaluation protocols for appropriate product identification. Herein, we exemplify the spirit of the evaluation protocols for gas phase operation at the device level with a combination of online product analysis and isotopic labeling. Our protocol involves control experiments by replacing the cathodic N<sub>2</sub> feed with (i) inert gas (i.e. Ar) and (ii) isotopic labeled <sup>15</sup>N<sub>2</sub> and by replacing the anodic water feed with isotopic labeled D<sub>2</sub>O. Taking advantage of the gas phase operation in the cathode product analysis is realized with online techniques i.e. quadrupole mass-spectrometer (QMS) and Fourier transform infrared (FTIR) spectrometer. This allows us to verify the production of diazene (N<sub>2</sub>H<sub>2</sub>) resulted from genuine N<sub>2</sub> reduction, rather than from nitrogen-containing contaminants. Our methodology provides a pathway for how the false positive results can be eliminated in the gas phase study and a platform for follow-up studies using promising or exotic catalysts in the cathode, especially to validate the eNRR products or discover more products.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"166 ","pages":"Article 107794"},"PeriodicalIF":4.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001371/pdfft?md5=911aed3ca326b99090808ff73df865b1&pid=1-s2.0-S1388248124001371-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel Cu(200)/Ti cathode for the enhancement of N2 selectivity in direct ammonia electrolysis: The controls of Cu cathode facet orientation","authors":"Ming-Han Tsai , Yaju Juang , Chi-Chang Hu , Shih-Hua Chen , Lap-Cuong Hua , Chihpin Huang","doi":"10.1016/j.elecom.2024.107793","DOIUrl":"10.1016/j.elecom.2024.107793","url":null,"abstract":"<div><p>Direct electrochemical ammonia oxidation reaction (AOR) using NiCu-based anodes is effective in removing ammonia from wastewater. However, this type of anode frequently produces undesired byproducts NO<sub>3</sub><sup>−</sup>. Here, we investigated three configurations of novel Cu/Ti cathodes (Cu(1<!--> <!-->1<!--> <!-->1)/Ti, Cu(2<!--> <!-->0<!--> <!-->0)/Ti, Cu(2<!--> <!-->2<!--> <!-->0)/Ti) coupled with Cu/Ni foam (Cu/NF) anode to enhance N<sub>2</sub> selectivity (SN<sub>2</sub>) in a direct ammonia electrolysis cell. Cu(2<!--> <!-->0<!--> <!-->0)/Ti cathode improved SN<sub>2</sub> from 35 % (bare Ti cathode) to 60 % and it achieved 10–15 % higher SN<sub>2</sub> compared to Cu(1<!--> <!-->1<!--> <!-->1)/Ti and Cu(2<!--> <!-->2<!--> <!-->0)/Ti. The improvement of SN<sub>2</sub> on Cu(2<!--> <!-->0<!--> <!-->0) facet was ascribed to the high nitrate electroreduction activity and its conversion to N<sub>2</sub>. In real wastewater, Cu/NF anode-Cu(2<!--> <!-->0<!--> <!-->0)/Ti cathode paired electrolysis system demonstrated its excellent capability of 88 % NH<sub>3</sub> removal with 95 % SN<sub>2</sub>. Our electrolysis system was capable to maintain the residual NH<sub>3</sub>-N and the NO<sub>3</sub>-N below 8 mg L<sup>−1</sup>, meeting effluent discharge standards. Our findings highlighted the importance of the control of Cu cathode facet orientations for an efficient elimination of NO<sub>3</sub><sup>–</sup> and improvement of N<sub>2</sub> production during direct ammonia electrolysis.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"166 ","pages":"Article 107793"},"PeriodicalIF":4.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S138824812400136X/pdfft?md5=68cde13eb19ccf745d3d627e9a46acf5&pid=1-s2.0-S138824812400136X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Keqi Chen , Zengmou Li , Keyu Zhang , Dingfang Cui , Rui Yan , Minghao Ye , Bin Yang , Yaochun Yao
{"title":"Improving rate performance of FeC2O4/rGO composites on lithium storage via single-polymerization‐induced electrostatic self‐assembly","authors":"Keqi Chen , Zengmou Li , Keyu Zhang , Dingfang Cui , Rui Yan , Minghao Ye , Bin Yang , Yaochun Yao","doi":"10.1016/j.elecom.2024.107791","DOIUrl":"10.1016/j.elecom.2024.107791","url":null,"abstract":"<div><p>Based on the wide interlayer distance for ions diffusion, iron (II) oxalate exhibits excellent lithium storage ability. However, the local deposition of metallic nanoparticles of Fe<sup>0</sup> leads to low electrochemical reactivity, which hinders the actual application of FeC<sub>2</sub>O<sub>4</sub> in large current regions (>5C). To solve this problem, a strong cationic polymeric electrolyte, polyelectrolyte diallyl dimethyl ammonium (PDDA), was introduced to construct a [FeC<sub>2</sub>O<sub>4</sub>(PDDA)]<sup>+</sup> ligand. By single-polymerization‐induced electrostatic self-assembly, the [FeC<sub>2</sub>O<sub>4</sub>(PDDA)]<sup>+</sup> ligand was combined with the surface-charged rGO to produce a FeC<sub>2</sub>O<sub>4</sub>/rGO material. It is proved that the rGO carrier improves the interparticle conductivity, electrochemical activity and structure stability of the iron (II) oxalate particles, ensuring the stability of Li || FeC<sub>2</sub>O<sub>4</sub>/rGO battery at a rapid charging rate of 20C (8 A g<sup>−1</sup>) for more than 500 cycles (with the special capacity of 713 mAh g<sup>−1</sup>). Compared with FeC<sub>2</sub>O<sub>4</sub> electrode, owning to high reactivity of rGO and continuously activating on the nanoscale Fe metal generated at ∼0.75 V, FeC<sub>2</sub>O<sub>4</sub>/rGO shows higher electrochemical activity of conversion reaction in the first 50 cycles and better reversibility in the rate charge–discharge test (the capacity rapidly increased to 1158.8 mAh g<sup>−1</sup> after 20C cycles). This work reveals how the structural design of conducting and supporting the carrier can achieve fast charging for iron (II) oxalate lithium-ion batteries.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"166 ","pages":"Article 107791"},"PeriodicalIF":4.7,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001346/pdfft?md5=927af48ce748b51866f302ce763ebc80&pid=1-s2.0-S1388248124001346-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}