{"title":"可变操作条件下IrOx电催化剂的活性和稳定性自动评价代理","authors":"Guanqi Huang , Carlota Bozal-Ginesta , Alán Aspuru-Guzik","doi":"10.1016/j.elecom.2025.108034","DOIUrl":null,"url":null,"abstract":"<div><div>To accelerate the screening of electrocatalyst materials, it is necessary to enhance the efficiency of their performance evaluation and optimization under dynamic conditions. The activity and stability of electrocatalyst materials are two crucial metrics that are typically correlated, and thus need to be evaluated in parallel. However. assessing both activity and stability in a time-efficient, reliable and comparable manner remains a challenge. Given the rising interest in evaluating electrocatalysts under realistic fluctuating conditions, we propose an electrochemical approach that uses random sampling and Bayesian optimization to explore pulsed amperometry conditions in hydrous iridium oxides for the oxygen evolution reaction. This method provides activity and stability proxies independent of sample loading which are validated against literature data.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"179 ","pages":"Article 108034"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activity and stability proxies for automated evaluation of IrOx electrocatalysts under variable operating conditions\",\"authors\":\"Guanqi Huang , Carlota Bozal-Ginesta , Alán Aspuru-Guzik\",\"doi\":\"10.1016/j.elecom.2025.108034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To accelerate the screening of electrocatalyst materials, it is necessary to enhance the efficiency of their performance evaluation and optimization under dynamic conditions. The activity and stability of electrocatalyst materials are two crucial metrics that are typically correlated, and thus need to be evaluated in parallel. However. assessing both activity and stability in a time-efficient, reliable and comparable manner remains a challenge. Given the rising interest in evaluating electrocatalysts under realistic fluctuating conditions, we propose an electrochemical approach that uses random sampling and Bayesian optimization to explore pulsed amperometry conditions in hydrous iridium oxides for the oxygen evolution reaction. This method provides activity and stability proxies independent of sample loading which are validated against literature data.</div></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"179 \",\"pages\":\"Article 108034\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248125001742\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125001742","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Activity and stability proxies for automated evaluation of IrOx electrocatalysts under variable operating conditions
To accelerate the screening of electrocatalyst materials, it is necessary to enhance the efficiency of their performance evaluation and optimization under dynamic conditions. The activity and stability of electrocatalyst materials are two crucial metrics that are typically correlated, and thus need to be evaluated in parallel. However. assessing both activity and stability in a time-efficient, reliable and comparable manner remains a challenge. Given the rising interest in evaluating electrocatalysts under realistic fluctuating conditions, we propose an electrochemical approach that uses random sampling and Bayesian optimization to explore pulsed amperometry conditions in hydrous iridium oxides for the oxygen evolution reaction. This method provides activity and stability proxies independent of sample loading which are validated against literature data.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.