Manish Kumar Singla , S.A. Muhammed Ali , Jyoti Gupta , Pradeep Jangir , Arpita , Ramesh Kumar , Reena Jangid , Mohammad Khishe
{"title":"基于战场优化算法的七参数PEMFC模型优化","authors":"Manish Kumar Singla , S.A. Muhammed Ali , Jyoti Gupta , Pradeep Jangir , Arpita , Ramesh Kumar , Reena Jangid , Mohammad Khishe","doi":"10.1016/j.elecom.2025.108033","DOIUrl":null,"url":null,"abstract":"<div><div>Precise modeling of Proton Exchange Membrane Fuel Cells (PEMFCs) requires accurate identification of key parameters, which are often unavailable from manufacturers but crucial for predicting fuel cell performance. The system relies on seven key parameters to determine activation and ohmic and concentration overpotential values through ξ1, ξ2, ξ3, ξ4, λ, Rc, and β. The Battlefield Optimization Algorithm (BfOA) represents a new optimization method that finds these seven essential PEMFC parameters effectively. Using Sum Squared Error (SSE) to minimize the difference between estimated and actual cell voltages, BfOA outperformed other optimization algorithms in determining parameters for six PEMFC models under varying operating conditions. The optimized parameters enabled accurate prediction of I-V and P<img>V curves, closely matching experimental data. BfOA's efficiency and robustness make it well-.</div><div>suited for real-time fuel cell modeling. Its effectiveness as a method for precise PEMFC device analysis within electronic component simulators is demonstrated. Future development will explore BfOA's compatibility with other fuel cell technologies, incorporate real-time data capabilities, and implement the algorithm in embedded systems for real-time PEMFC monitoring and control.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"179 ","pages":"Article 108033"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seven-parameter PEMFC model optimization using an battlefield optimization algorithm\",\"authors\":\"Manish Kumar Singla , S.A. Muhammed Ali , Jyoti Gupta , Pradeep Jangir , Arpita , Ramesh Kumar , Reena Jangid , Mohammad Khishe\",\"doi\":\"10.1016/j.elecom.2025.108033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Precise modeling of Proton Exchange Membrane Fuel Cells (PEMFCs) requires accurate identification of key parameters, which are often unavailable from manufacturers but crucial for predicting fuel cell performance. The system relies on seven key parameters to determine activation and ohmic and concentration overpotential values through ξ1, ξ2, ξ3, ξ4, λ, Rc, and β. The Battlefield Optimization Algorithm (BfOA) represents a new optimization method that finds these seven essential PEMFC parameters effectively. Using Sum Squared Error (SSE) to minimize the difference between estimated and actual cell voltages, BfOA outperformed other optimization algorithms in determining parameters for six PEMFC models under varying operating conditions. The optimized parameters enabled accurate prediction of I-V and P<img>V curves, closely matching experimental data. BfOA's efficiency and robustness make it well-.</div><div>suited for real-time fuel cell modeling. Its effectiveness as a method for precise PEMFC device analysis within electronic component simulators is demonstrated. Future development will explore BfOA's compatibility with other fuel cell technologies, incorporate real-time data capabilities, and implement the algorithm in embedded systems for real-time PEMFC monitoring and control.</div></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"179 \",\"pages\":\"Article 108033\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248125001730\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125001730","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Seven-parameter PEMFC model optimization using an battlefield optimization algorithm
Precise modeling of Proton Exchange Membrane Fuel Cells (PEMFCs) requires accurate identification of key parameters, which are often unavailable from manufacturers but crucial for predicting fuel cell performance. The system relies on seven key parameters to determine activation and ohmic and concentration overpotential values through ξ1, ξ2, ξ3, ξ4, λ, Rc, and β. The Battlefield Optimization Algorithm (BfOA) represents a new optimization method that finds these seven essential PEMFC parameters effectively. Using Sum Squared Error (SSE) to minimize the difference between estimated and actual cell voltages, BfOA outperformed other optimization algorithms in determining parameters for six PEMFC models under varying operating conditions. The optimized parameters enabled accurate prediction of I-V and PV curves, closely matching experimental data. BfOA's efficiency and robustness make it well-.
suited for real-time fuel cell modeling. Its effectiveness as a method for precise PEMFC device analysis within electronic component simulators is demonstrated. Future development will explore BfOA's compatibility with other fuel cell technologies, incorporate real-time data capabilities, and implement the algorithm in embedded systems for real-time PEMFC monitoring and control.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.