Divya Velayudhan, Abdelfatah Ahmed, Taimur Hassan, Muhammad Owais, Neha Gour, Mohammed Bennamoun, Ernesto Damiani, Naoufel Werghi
{"title":"Semi-supervised contour-driven broad learning system for autonomous segmentation of concealed prohibited baggage items.","authors":"Divya Velayudhan, Abdelfatah Ahmed, Taimur Hassan, Muhammad Owais, Neha Gour, Mohammed Bennamoun, Ernesto Damiani, Naoufel Werghi","doi":"10.1186/s42492-024-00182-7","DOIUrl":"https://doi.org/10.1186/s42492-024-00182-7","url":null,"abstract":"<p><p>With the exponential rise in global air traffic, ensuring swift passenger processing while countering potential security threats has become a paramount concern for aviation security. Although X-ray baggage monitoring is now standard, manual screening has several limitations, including the propensity for errors, and raises concerns about passenger privacy. To address these drawbacks, researchers have leveraged recent advances in deep learning to design threat-segmentation frameworks. However, these models require extensive training data and labour-intensive dense pixel-wise annotations and are finetuned separately for each dataset to account for inter-dataset discrepancies. Hence, this study proposes a semi-supervised contour-driven broad learning system (BLS) for X-ray baggage security threat instance segmentation referred to as C-BLX. The research methodology involved enhancing representation learning and achieving faster training capability to tackle severe occlusion and class imbalance using a single training routine with limited baggage scans. The proposed framework was trained with minimal supervision using resource-efficient image-level labels to localize illegal items in multi-vendor baggage scans. More specifically, the framework generated candidate region segments from the input X-ray scans based on local intensity transition cues, effectively identifying concealed prohibited items without entire baggage scans. The multi-convolutional BLS exploits the rich complementary features extracted from these region segments to predict object categories, including threat and benign classes. The contours corresponding to the region segments predicted as threats were then utilized to yield the segmentation results. The proposed C-BLX system was thoroughly evaluated on three highly imbalanced public datasets and surpassed other competitive approaches in baggage-threat segmentation, yielding 90.04%, 78.92%, and 59.44% in terms of mIoU on GDXray, SIXray, and Compass-XP, respectively. Furthermore, the limitations of the proposed system in extracting precise region segments in intricate noisy settings and potential strategies for overcoming them through post-processing techniques were explored (source code will be available at https://github.com/Divs1159/CNN_BLS .).</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"7 1","pages":"30"},"PeriodicalIF":3.2,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142883119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy consumption forecasting for laser manufacturing of large artifacts based on fusionable transfer learning.","authors":"Linxuan Wang, Jinghua Xu, Shuyou Zhang, Jianrong Tan, Shaomei Fei, Xuezhi Shi, Jihong Pang, Sheng Luo","doi":"10.1186/s42492-024-00178-3","DOIUrl":"10.1186/s42492-024-00178-3","url":null,"abstract":"<p><p>This study presents an energy consumption (EC) forecasting method for laser melting manufacturing of metal artifacts based on fusionable transfer learning (FTL). To predict the EC of manufacturing products, particularly from scale-down to scale-up, a general paradigm was first developed by categorizing the overall process into three main sub-steps. The operating electrical power was further formulated as a combinatorial function, based on which an operator learning network was adopted to fit the nonlinear relations between the fabricating arguments and EC. Parallel-arranged networks were constructed to investigate the impacts of fabrication variables and devices on power. Considering the interconnections among these factors, the outputs of the neural networks were blended and fused to jointly predict the electrical power. Most innovatively, large artifacts can be decomposed into time-dependent laser-scanning trajectories, which can be further transformed into fusionable information via neural networks, inspired by large language model. Accordingly, transfer learning can deal with either scale-down or scale-up forecasting, namely, FTL with scalability within artifact structures. The effectiveness of the proposed FTL was verified through physical fabrication experiments via laser powder bed fusion. The relative error of the average and overall EC predictions based on FTL was maintained below 0.83%. The melting fusion quality was examined using metallographic diagrams. The proposed FTL framework can forecast the EC of scaled structures, which is particularly helpful in price estimation and quotation of large metal products towards carbon peaking and carbon neutrality.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"7 1","pages":"29"},"PeriodicalIF":3.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612079/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142772951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cindy Xue, Jing Yuan, Gladys G Lo, Darren M C Poon, Winnie Cw Chu
{"title":"Computational analysis of variability and uncertainty in the clinical reference on magnetic resonance imaging radiomics: modelling and performance.","authors":"Cindy Xue, Jing Yuan, Gladys G Lo, Darren M C Poon, Winnie Cw Chu","doi":"10.1186/s42492-024-00180-9","DOIUrl":"10.1186/s42492-024-00180-9","url":null,"abstract":"<p><p>To conduct a computational investigation to explore the influence of clinical reference uncertainty on magnetic resonance imaging (MRI) radiomics feature selection, modelling, and performance. This study used two sets of publicly available prostate cancer MRI = radiomics data (Dataset 1: n = 260; Dataset 2: n = 100) with Gleason score clinical references. Each dataset was divided into training and holdout testing datasets at a ratio of 7:3 and analysed independently. The clinical references of the training set were permuted at different levels (increments of 5%) and repeated 20 times. Four feature selection algorithms and two classifiers were used to construct the models. Cross-validation was employed for training, while a separate hold-out testing set was used for evaluation. The Jaccard similarity coefficient was used to evaluate feature selection, while the area under the curve (AUC) and accuracy were used to assess model performance. An analysis of variance test with Bonferroni correction was conducted to compare the metrics of each model. The consistency of the feature selection performance decreased substantially with the clinical reference permutation. AUCs of the trained models with permutation particularly after 20% were significantly lower (Dataset 1 (with ≥ 20% permutation): 0.67, and Dataset 2 (≥ 20% permutation): 0.74), compared to the AUC of models without permutation (Dataset 1: 0.94, Dataset 2: 0.97). The performances of the models were also associated with larger uncertainties and an increasing number of permuted clinical references. Clinical reference uncertainty can substantially influence MRI radiomic feature selection and modelling. The high accuracy of clinical references should be helpful in building reliable and robust radiomic models. Careful interpretation of the model performance is necessary, particularly for high-dimensional data.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"7 1","pages":"28"},"PeriodicalIF":3.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573982/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Survey of real-time brainmedia in artistic exploration.","authors":"Rem RunGu Lin, Kang Zhang","doi":"10.1186/s42492-024-00179-2","DOIUrl":"10.1186/s42492-024-00179-2","url":null,"abstract":"<p><p>This survey examines the evolution and impact of real-time brainmedia on artistic exploration, contextualizing developments within a historical framework. To enhance knowledge on the entanglement between the brain, mind, and body in an increasingly mediated world, this work defines a clear scope at the intersection of bio art and interactive art, concentrating on real-time brainmedia artworks developed in the 21st century. It proposes a set of criteria and a taxonomy based on historical notions, interaction dynamics, and media art representations. The goal is to provide a comprehensive overview of real-time brainmedia, setting the stage for future explorations of new paradigms in communication between humans, machines, and the environment.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"7 1","pages":"27"},"PeriodicalIF":3.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570570/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142649143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haichuan Zhao, Xudong Ru, Peng Du, Shaolong Liu, Na Liu, Xingce Wang, Zhongke Wu
{"title":"Achieving view-distance and -angle invariance in motion prediction using a simple network.","authors":"Haichuan Zhao, Xudong Ru, Peng Du, Shaolong Liu, Na Liu, Xingce Wang, Zhongke Wu","doi":"10.1186/s42492-024-00176-5","DOIUrl":"10.1186/s42492-024-00176-5","url":null,"abstract":"<p><p>Recently, human motion prediction has gained significant attention and achieved notable success. However, current methods primarily rely on training and testing with ideal datasets, overlooking the impact of variations in the viewing distance and viewing angle, which are commonly encountered in practical scenarios. In this study, we address the issue of model invariance by ensuring robust performance despite variations in view distances and angles. To achieve this, we employed Riemannian geometry methods to constrain the learning process of neural networks, enabling the prediction of invariances using a simple network. Furthermore, this enhances the application of motion prediction in various scenarios. Our framework uses Riemannian geometry to encode motion into a novel motion space to achieve prediction with an invariant viewing distance and angle using a simple network. Specifically, the specified path transport square-root velocity function is proposed to aid in removing the view-angle equivalence class and encode motion sequences into a flattened space. Motion coding by the geometry method linearizes the optimization problem in a non-flattened space and effectively extracts motion information, allowing the proposed method to achieve competitive performance using a simple network. Experimental results on Human 3.6M and CMU MoCap demonstrate that the proposed framework has competitive performance and invariance to the viewing distance and viewing angle.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"7 1","pages":"26"},"PeriodicalIF":3.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Real-time volume rendering for three-dimensional fetal ultrasound using volumetric photon mapping.","authors":"Jing Zou, Jing Qin","doi":"10.1186/s42492-024-00177-4","DOIUrl":"https://doi.org/10.1186/s42492-024-00177-4","url":null,"abstract":"<p><p>Three-dimensional (3D) fetal ultrasound has been widely used in prenatal examinations. Realistic and real-time volumetric ultrasound volume rendering can enhance the effectiveness of diagnoses and assist obstetricians and pregnant mothers in communicating. However, this remains a challenging task because (1) there is a large amount of speckle noise in ultrasound images and (2) ultrasound images usually have low contrasts, making it difficult to distinguish different tissues and organs. However, traditional local-illumination-based methods do not achieve satisfactory results. This real-time requirement makes the task increasingly challenging. This study presents a novel real-time volume-rendering method equipped with a global illumination model for 3D fetal ultrasound visualization. This method can render direct illumination and indirect illumination separately by calculating single scattering and multiple scattering radiances, respectively. The indirect illumination effect was simulated using volumetric photon mapping. Calculating each photon's brightness is proposed using a novel screen-space destiny estimation to avoid complicated storage structures and accelerate computation. This study proposes a high dynamic range approach to address the issue of fetal skin with a dynamic range exceeding that of the display device. Experiments show that our technology, compared to conventional methodologies, can generate realistic rendering results with far more depth information.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"7 1","pages":"25"},"PeriodicalIF":3.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511803/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dennis Hein, Staffan Holmin, Timothy Szczykutowicz, Jonathan S Maltz, Mats Danielsson, Ge Wang, Mats Persson
{"title":"Noise suppression in photon-counting computed tomography using unsupervised Poisson flow generative models.","authors":"Dennis Hein, Staffan Holmin, Timothy Szczykutowicz, Jonathan S Maltz, Mats Danielsson, Ge Wang, Mats Persson","doi":"10.1186/s42492-024-00175-6","DOIUrl":"10.1186/s42492-024-00175-6","url":null,"abstract":"<p><p>Deep learning (DL) has proven to be important for computed tomography (CT) image denoising. However, such models are usually trained under supervision, requiring paired data that may be difficult to obtain in practice. Diffusion models offer unsupervised means of solving a wide range of inverse problems via posterior sampling. In particular, using the estimated unconditional score function of the prior distribution, obtained via unsupervised learning, one can sample from the desired posterior via hijacking and regularization. However, due to the iterative solvers used, the number of function evaluations (NFE) required may be orders of magnitudes larger than for single-step samplers. In this paper, we present a novel image denoising technique for photon-counting CT by extending the unsupervised approach to inverse problem solving to the case of Poisson flow generative models (PFGM)++. By hijacking and regularizing the sampling process we obtain a single-step sampler, that is NFE = 1. Our proposed method incorporates posterior sampling using diffusion models as a special case. We demonstrate that the added robustness afforded by the PFGM++ framework yields significant performance gains. Our results indicate competitive performance compared to popular supervised, including state-of-the-art diffusion-style models with NFE = 1 (consistency models), unsupervised, and non-DL-based image denoising techniques, on clinical low-dose CT data and clinical images from a prototype photon-counting CT system developed by GE HealthCare.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"7 1","pages":"24"},"PeriodicalIF":3.2,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142297060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natalie Hube, Melissa Reinelt, Kresimir Vidackovic, Michael Sedlmair
{"title":"A study on the influence of situations on personal avatar characteristics.","authors":"Natalie Hube, Melissa Reinelt, Kresimir Vidackovic, Michael Sedlmair","doi":"10.1186/s42492-024-00174-7","DOIUrl":"10.1186/s42492-024-00174-7","url":null,"abstract":"<p><p>Avatars play a key role in how persons interact within virtual environments, acting as the digital selves. There are many types of avatars, each serving the purpose of representing users or others in these immersive spaces. However, the optimal approach for these avatars remains unclear. Although consumer applications often use cartoon-like avatars, this trend is not as common in work settings. To gain a better understanding of the kinds of avatars people prefer, three studies were conducted involving both screen-based and virtual reality setups, looking into how social settings might affect the way people choose their avatars. Personalized avatars were created for 91 participants, including 71 employees in the automotive field and 20 participants not affiliated with the company. The research shows that work-type situations influence the chosen avatar. At the same time, a correlation between the type of display medium used to display the avatar or the person's personality and their avatar choice was not found. Based on the findings, recommendations are made for future avatar representations in work environments and implications and research questions derived that can guide future research.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"7 1","pages":"23"},"PeriodicalIF":3.2,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142297059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine learning approach for the prediction of macrosomia.","authors":"Xiaochen Gu, Ping Huang, Xiaohua Xu, Zhicheng Zheng, Kaiju Luo, Yujie Xu, Yizhen Jia, Yongjin Zhou","doi":"10.1186/s42492-024-00172-9","DOIUrl":"10.1186/s42492-024-00172-9","url":null,"abstract":"<p><p>Fetal macrosomia is associated with maternal and newborn complications due to incorrect fetal weight estimation or inappropriate choice of delivery models. The early screening and evaluation of macrosomia in the third trimester can improve delivery outcomes and reduce complications. However, traditional clinical and ultrasound examinations face difficulties in obtaining accurate fetal measurements during the third trimester of pregnancy. This study aims to develop a comprehensive predictive model for detecting macrosomia using machine learning (ML) algorithms. The accuracy of macrosomia prediction using logistic regression, k-nearest neighbors, support vector machine, random forest (RF), XGBoost, and LightGBM algorithms was explored. Each approach was trained and validated using data from 3244 pregnant women at a hospital in southern China. The information gain method was employed to identify deterministic features associated with the occurrence of macrosomia. The performance of six ML algorithms based on the recall and area under the curve evaluation metrics were compared. To develop an efficient prediction model, two sets of experiments based on ultrasound examination records within 1-7 days and 8-14 days prior to delivery were conducted. The ensemble model, comprising the RF, XGBoost, and LightGBM algorithms, showed encouraging results. For each experimental group, the proposed ensemble model outperformed other ML approaches and the traditional Hadlock formula. The experimental results indicate that, with the most risk-relevant features, the ML algorithms presented in this study can predict macrosomia and assist obstetricians in selecting more appropriate delivery models.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"7 1","pages":"22"},"PeriodicalIF":3.2,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349957/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiushi Nie, Xiaoqing Zhang, Yan Hu, Mingdao Gong, Jiang Liu
{"title":"Medical image registration and its application in retinal images: a review.","authors":"Qiushi Nie, Xiaoqing Zhang, Yan Hu, Mingdao Gong, Jiang Liu","doi":"10.1186/s42492-024-00173-8","DOIUrl":"10.1186/s42492-024-00173-8","url":null,"abstract":"<p><p>Medical image registration is vital for disease diagnosis and treatment with its ability to merge diverse information of images, which may be captured under different times, angles, or modalities. Although several surveys have reviewed the development of medical image registration, they have not systematically summarized the existing medical image registration methods. To this end, a comprehensive review of these methods is provided from traditional and deep-learning-based perspectives, aiming to help audiences quickly understand the development of medical image registration. In particular, we review recent advances in retinal image registration, which has not attracted much attention. In addition, current challenges in retinal image registration are discussed and insights and prospects for future research provided.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"7 1","pages":"21"},"PeriodicalIF":3.2,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}