lvit.net:结合局部语义和多特征交叉融合的领域泛化人物再识别模型。

IF 3.2 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xintong Hu, Peishun Liu, Xuefang Wang, Peiyao Wu, Ruichun Tang
{"title":"lvit.net:结合局部语义和多特征交叉融合的领域泛化人物再识别模型。","authors":"Xintong Hu, Peishun Liu, Xuefang Wang, Peiyao Wu, Ruichun Tang","doi":"10.1186/s42492-025-00190-1","DOIUrl":null,"url":null,"abstract":"<p><p>In the task of domain generalization person re-identification (ReID), pedestrian image features exhibit significant intra-class variability and inter-class similarity. Existing methods rely on a single feature extraction architecture and struggle to capture both global context and local spatial information, resulting in weaker generalization to unseen domains. To address this issue, an innovative domain generalization person ReID method-LViT-Net, which combines local semantics and multi-feature cross fusion, is proposed. LViT-Net adopts a dual-branch encoder with a parallel hierarchical structure to extract both local and global discriminative features. In the local branch, the local multi-scale feature fusion module is designed to fuse local feature units at different scales to ensure that the fine-grained local features at various levels are accurately captured, thereby enhancing the robustness of the features. In the global branch, the dual feature cross fusion module fuses local features and global semantic information, focusing on critical semantic information and enabling the mutual refinement and matching of local and global features. This allows the model to achieve a dynamic balance between detailed and holistic information, forming robust feature representations of pedestrians. Extensive experiments demonstrate the effectiveness of LViT-Net. In both single-source and multi-source comparison experiments, the proposed method outperforms existing state-of-the-art methods.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"8 1","pages":"10"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12003221/pdf/","citationCount":"0","resultStr":"{\"title\":\"LViT-Net: a domain generalization person re-identification model combining local semantics and multi-feature cross fusion.\",\"authors\":\"Xintong Hu, Peishun Liu, Xuefang Wang, Peiyao Wu, Ruichun Tang\",\"doi\":\"10.1186/s42492-025-00190-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the task of domain generalization person re-identification (ReID), pedestrian image features exhibit significant intra-class variability and inter-class similarity. Existing methods rely on a single feature extraction architecture and struggle to capture both global context and local spatial information, resulting in weaker generalization to unseen domains. To address this issue, an innovative domain generalization person ReID method-LViT-Net, which combines local semantics and multi-feature cross fusion, is proposed. LViT-Net adopts a dual-branch encoder with a parallel hierarchical structure to extract both local and global discriminative features. In the local branch, the local multi-scale feature fusion module is designed to fuse local feature units at different scales to ensure that the fine-grained local features at various levels are accurately captured, thereby enhancing the robustness of the features. In the global branch, the dual feature cross fusion module fuses local features and global semantic information, focusing on critical semantic information and enabling the mutual refinement and matching of local and global features. This allows the model to achieve a dynamic balance between detailed and holistic information, forming robust feature representations of pedestrians. Extensive experiments demonstrate the effectiveness of LViT-Net. In both single-source and multi-source comparison experiments, the proposed method outperforms existing state-of-the-art methods.</p>\",\"PeriodicalId\":29931,\"journal\":{\"name\":\"Visual Computing for Industry Biomedicine and Art\",\"volume\":\"8 1\",\"pages\":\"10\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12003221/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Computing for Industry Biomedicine and Art\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-025-00190-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry Biomedicine and Art","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-025-00190-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在领域泛化人再识别任务中,行人图像特征表现出显著的类内变异性和类间相似性。现有的方法依赖于单一的特征提取架构,难以同时捕获全局上下文和局部空间信息,导致对未知领域的泛化能力较弱。针对这一问题,提出了一种结合局部语义和多特征交叉融合的领域泛化人物识别方法——lviti - net。lvit.net采用并行分层结构的双分支编码器提取局部和全局判别特征。在局部分支中,设计局部多尺度特征融合模块,融合不同尺度的局部特征单元,确保准确捕获各个层次的细粒度局部特征,增强特征的鲁棒性。在全局分支中,双特征交叉融合模块融合局部特征和全局语义信息,聚焦关键语义信息,实现局部特征和全局特征的相互细化和匹配。这使得模型能够在详细信息和整体信息之间实现动态平衡,形成稳健的行人特征表征。大量的实验证明了lvit.net的有效性。在单源和多源对比实验中,该方法优于现有的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LViT-Net: a domain generalization person re-identification model combining local semantics and multi-feature cross fusion.

In the task of domain generalization person re-identification (ReID), pedestrian image features exhibit significant intra-class variability and inter-class similarity. Existing methods rely on a single feature extraction architecture and struggle to capture both global context and local spatial information, resulting in weaker generalization to unseen domains. To address this issue, an innovative domain generalization person ReID method-LViT-Net, which combines local semantics and multi-feature cross fusion, is proposed. LViT-Net adopts a dual-branch encoder with a parallel hierarchical structure to extract both local and global discriminative features. In the local branch, the local multi-scale feature fusion module is designed to fuse local feature units at different scales to ensure that the fine-grained local features at various levels are accurately captured, thereby enhancing the robustness of the features. In the global branch, the dual feature cross fusion module fuses local features and global semantic information, focusing on critical semantic information and enabling the mutual refinement and matching of local and global features. This allows the model to achieve a dynamic balance between detailed and holistic information, forming robust feature representations of pedestrians. Extensive experiments demonstrate the effectiveness of LViT-Net. In both single-source and multi-source comparison experiments, the proposed method outperforms existing state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信