流行的网络图书馆的图形可视化效率。

IF 3.2 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xin Zhao, Xuan Wang, Xianzhe Zou, Huiming Liang, Genghuai Bai, Ning Zhang, Xin Huang, Fangfang Zhou, Ying Zhao
{"title":"流行的网络图书馆的图形可视化效率。","authors":"Xin Zhao, Xuan Wang, Xianzhe Zou, Huiming Liang, Genghuai Bai, Ning Zhang, Xin Huang, Fangfang Zhou, Ying Zhao","doi":"10.1186/s42492-025-00193-y","DOIUrl":null,"url":null,"abstract":"<p><p>Web-based libraries, such as D3.js, ECharts.js, and G6.js, are widely used to generate node-link graph visualizations. These libraries allow users to call application programming interfaces (APIs) without identifying the details of the encapsulated techniques such as graph layout algorithms and graph rendering methods. Efficiency requirements, such as visualizing a graph with 3k nodes and 4k edges within 1 min at a frame rate of 30 fps, are crucial for selecting a proper library because libraries generally present different characteristics owing to the diversity of encapsulated techniques. However, existing studies have mainly focused on verifying the advantages of a new layout algorithm or rendering method from a theoretical viewpoint independent of specific web-based libraries. Their conclusions are difficult for end users to understand and utilize. Therefore, a trial-and-error selection process is required. This study addresses this gap by conducting an empirical experiment to evaluate the performance of web-based libraries. The experiment involves popular libraries and hundreds of graph datasets covering node scales from 100 to 200k and edge-to-node ratios from 1 to 10 (including complete graphs). The experimental results are the time costs and frame rates recorded using the libraries to visualize the datasets. The authors analyze the performance characteristics of each library in depth based on the results and organize the results and findings into application-oriented guidelines. Additionally, they present three usage cases to illustrate how the guidelines can be applied in practice. These guidelines offer user-friendly and reliable recommendations, aiding users in quickly selecting the desired web-based libraries based on their specific efficiency requirements for node-link graph visualizations.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"8 1","pages":"12"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061801/pdf/","citationCount":"0","resultStr":"{\"title\":\"Graph visualization efficiency of popular web-based libraries.\",\"authors\":\"Xin Zhao, Xuan Wang, Xianzhe Zou, Huiming Liang, Genghuai Bai, Ning Zhang, Xin Huang, Fangfang Zhou, Ying Zhao\",\"doi\":\"10.1186/s42492-025-00193-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Web-based libraries, such as D3.js, ECharts.js, and G6.js, are widely used to generate node-link graph visualizations. These libraries allow users to call application programming interfaces (APIs) without identifying the details of the encapsulated techniques such as graph layout algorithms and graph rendering methods. Efficiency requirements, such as visualizing a graph with 3k nodes and 4k edges within 1 min at a frame rate of 30 fps, are crucial for selecting a proper library because libraries generally present different characteristics owing to the diversity of encapsulated techniques. However, existing studies have mainly focused on verifying the advantages of a new layout algorithm or rendering method from a theoretical viewpoint independent of specific web-based libraries. Their conclusions are difficult for end users to understand and utilize. Therefore, a trial-and-error selection process is required. This study addresses this gap by conducting an empirical experiment to evaluate the performance of web-based libraries. The experiment involves popular libraries and hundreds of graph datasets covering node scales from 100 to 200k and edge-to-node ratios from 1 to 10 (including complete graphs). The experimental results are the time costs and frame rates recorded using the libraries to visualize the datasets. The authors analyze the performance characteristics of each library in depth based on the results and organize the results and findings into application-oriented guidelines. Additionally, they present three usage cases to illustrate how the guidelines can be applied in practice. These guidelines offer user-friendly and reliable recommendations, aiding users in quickly selecting the desired web-based libraries based on their specific efficiency requirements for node-link graph visualizations.</p>\",\"PeriodicalId\":29931,\"journal\":{\"name\":\"Visual Computing for Industry Biomedicine and Art\",\"volume\":\"8 1\",\"pages\":\"12\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061801/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Computing for Industry Biomedicine and Art\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-025-00193-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry Biomedicine and Art","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-025-00193-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

基于web的库,如D3.js、ECharts.js和G6.js,被广泛用于生成节点链接图形可视化。这些库允许用户调用应用程序编程接口(api),而无需识别封装技术的细节,如图形布局算法和图形呈现方法。效率要求,例如在1分钟内以30 fps的帧率显示具有3k个节点和4k条的图形,对于选择合适的库至关重要,因为由于封装技术的多样性,库通常呈现不同的特征。然而,现有的研究主要集中在从理论角度验证一种新的布局算法或呈现方法的优势,而不依赖于具体的网络图书馆。他们的结论对最终用户来说很难理解和利用。因此,需要一个反复试验的选择过程。本研究通过进行实证实验来评估基于web的图书馆的性能,从而解决了这一差距。该实验涉及流行的库和数百个图数据集,涵盖从100到200k的节点规模和从1到10的边与节点比率(包括完整图)。实验结果是使用库记录的时间成本和帧率来可视化数据集。作者根据结果深入分析了每个库的性能特征,并将结果和发现组织成面向应用的指南。此外,他们还提供了三个用例来说明如何在实践中应用这些指导方针。这些指南提供了用户友好且可靠的建议,帮助用户根据节点链接图可视化的特定效率要求快速选择所需的基于web的库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph visualization efficiency of popular web-based libraries.

Web-based libraries, such as D3.js, ECharts.js, and G6.js, are widely used to generate node-link graph visualizations. These libraries allow users to call application programming interfaces (APIs) without identifying the details of the encapsulated techniques such as graph layout algorithms and graph rendering methods. Efficiency requirements, such as visualizing a graph with 3k nodes and 4k edges within 1 min at a frame rate of 30 fps, are crucial for selecting a proper library because libraries generally present different characteristics owing to the diversity of encapsulated techniques. However, existing studies have mainly focused on verifying the advantages of a new layout algorithm or rendering method from a theoretical viewpoint independent of specific web-based libraries. Their conclusions are difficult for end users to understand and utilize. Therefore, a trial-and-error selection process is required. This study addresses this gap by conducting an empirical experiment to evaluate the performance of web-based libraries. The experiment involves popular libraries and hundreds of graph datasets covering node scales from 100 to 200k and edge-to-node ratios from 1 to 10 (including complete graphs). The experimental results are the time costs and frame rates recorded using the libraries to visualize the datasets. The authors analyze the performance characteristics of each library in depth based on the results and organize the results and findings into application-oriented guidelines. Additionally, they present three usage cases to illustrate how the guidelines can be applied in practice. These guidelines offer user-friendly and reliable recommendations, aiding users in quickly selecting the desired web-based libraries based on their specific efficiency requirements for node-link graph visualizations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信