Graph neural network-tracker: a graph neural network-based multi-sensor fusion framework for robust unmanned aerial vehicle tracking.

IF 3.2 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Karim Dabbabi, Tijeni Delleji
{"title":"Graph neural network-tracker: a graph neural network-based multi-sensor fusion framework for robust unmanned aerial vehicle tracking.","authors":"Karim Dabbabi, Tijeni Delleji","doi":"10.1186/s42492-025-00200-2","DOIUrl":null,"url":null,"abstract":"<p><p>Unmanned aerial vehicle (UAV) tracking is a critical task in surveillance, security, and autonomous navigation applications. In this study, we propose graph neural network-tracker (GNN-tracker), a novel GNN-based UAV tracking framework that effectively integrates graph-based spatial-temporal modelling, Transformer-based feature extraction, and multi-sensor fusion to enhance tracking robustness and accuracy. Unlike traditional tracking approaches, GNN-tracker dynamically constructs a spatiotemporal graph representation, improving identity consistency and reducing tracking errors under OCC-heavy scenarios. Experimental evaluations on optical, thermal, and fused UAV datasets demonstrate the superiority of GNN-tracker (fused) over state-of-the-art methods. The proposed model achieves multiple object tracking accuracy (MOTA) scores of 91.4% (fused), 89.1% (optical), and 86.3% (thermal), surpassing TransT by 8.9% in MOTA and 7.7% in higher order tracking accuracy (HOTA). The HOTA scores of 82.3% (fused), 80.1% (optical), and 78.7% (thermal) validate its strong object association capabilities, while its frames per second of 58.9 (fused), 56.8 (optical), and 54.3 (thermal) ensures real-time performance. Additionally, ablation studies confirm the essential role of graph-based modelling and multi-sensor fusion, with performance drops of up to 8.9% in MOTA when these components are removed. Thus, GNN-tracker (fused) offers a highly accurate, robust, and efficient UAV tracking solution, effectively addressing real-world challenges across diverse environmental conditions and multiple sensor modalities.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"8 1","pages":"18"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267811/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry Biomedicine and Art","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-025-00200-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Unmanned aerial vehicle (UAV) tracking is a critical task in surveillance, security, and autonomous navigation applications. In this study, we propose graph neural network-tracker (GNN-tracker), a novel GNN-based UAV tracking framework that effectively integrates graph-based spatial-temporal modelling, Transformer-based feature extraction, and multi-sensor fusion to enhance tracking robustness and accuracy. Unlike traditional tracking approaches, GNN-tracker dynamically constructs a spatiotemporal graph representation, improving identity consistency and reducing tracking errors under OCC-heavy scenarios. Experimental evaluations on optical, thermal, and fused UAV datasets demonstrate the superiority of GNN-tracker (fused) over state-of-the-art methods. The proposed model achieves multiple object tracking accuracy (MOTA) scores of 91.4% (fused), 89.1% (optical), and 86.3% (thermal), surpassing TransT by 8.9% in MOTA and 7.7% in higher order tracking accuracy (HOTA). The HOTA scores of 82.3% (fused), 80.1% (optical), and 78.7% (thermal) validate its strong object association capabilities, while its frames per second of 58.9 (fused), 56.8 (optical), and 54.3 (thermal) ensures real-time performance. Additionally, ablation studies confirm the essential role of graph-based modelling and multi-sensor fusion, with performance drops of up to 8.9% in MOTA when these components are removed. Thus, GNN-tracker (fused) offers a highly accurate, robust, and efficient UAV tracking solution, effectively addressing real-world challenges across diverse environmental conditions and multiple sensor modalities.

图神经网络跟踪器:一种基于图神经网络的多传感器融合框架,用于鲁棒无人机跟踪。
无人机(UAV)跟踪是监视、安全和自主导航应用中的一项关键任务。在这项研究中,我们提出了一种新的基于gnn的无人机跟踪框架——图神经网络跟踪器(GNN-tracker),该框架有效地集成了基于图的时空建模、基于变压器的特征提取和多传感器融合,以提高跟踪的鲁棒性和准确性。与传统的跟踪方法不同,GNN-tracker动态构建了一个时空图表示,提高了身份一致性,减少了occ重场景下的跟踪误差。对光学、热和融合无人机数据集的实验评估表明,gnn跟踪器(融合)优于最先进的方法。该模型的多目标跟踪精度(MOTA)得分分别为91.4%(融合)、89.1%(光学)和86.3%(热),在MOTA和高阶跟踪精度(HOTA)方面分别比TransT高8.9%和7.7%。82.3%(融合),80.1%(光学)和78.7%(热)的HOTA分数验证了其强大的对象关联能力,而每秒58.9帧(融合),56.8帧(光学)和54.3帧(热)确保了实时性。此外,消融研究证实了基于图形的建模和多传感器融合的重要作用,当这些组件被移除时,MOTA的性能下降高达8.9%。因此,gnn跟踪器(融合)提供了一种高度精确、鲁棒和高效的无人机跟踪解决方案,有效地解决了不同环境条件和多种传感器模式下的现实挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信