基于x线预测膝关节骨关节炎患者前交叉韧带功能的x线预测模型。

IF 6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Guanghan Gao, Yaonan Zhang, Lei Shi, Lin Wang, Fei Wang, Qingyun Xue
{"title":"基于x线预测膝关节骨关节炎患者前交叉韧带功能的x线预测模型。","authors":"Guanghan Gao, Yaonan Zhang, Lei Shi, Lin Wang, Fei Wang, Qingyun Xue","doi":"10.1186/s42492-025-00195-w","DOIUrl":null,"url":null,"abstract":"<p><p>Knee osteoarthritis (KOA) is a prevalent chronic condition in the elderly and is often associated with instability caused by anterior cruciate ligament (ACL) degeneration. The functional integrity of ACL is crucial for the diagnosis and treatment of KOA. Radiographic imaging is a practical diagnostic tool for predicting the functional status of the ACL. However, the precision of the current evaluation methodologies remains suboptimal. Consequently, we aimed to identify additional radiographic features from X-ray images that could predict the ACL function in a larger cohort of patients with KOA. A retrospective analysis was conducted on 272 patients whose ACL function was verified intraoperatively between October 2021 and October 2024. The patients were categorized into ACL-functional and ACL-dysfunctional groups. Using least absolute shrinkage and selection operator regression and logistic regression, four significant radiographic predictors were identified: location of the deepest wear on the medial tibial plateau (middle and posterior), wear depth in the posterior third of the medial tibial plateau (> 1.40 mm), posterior tibial slope (PTS > 7.90°), and static anterior tibial translation (> 4.49 mm). A clinical prediction model was developed and visualized using a nomogram with calibration curves and receiver operating characteristic analysis to confirm the model performance. The prediction model demonstrated great discriminative ability, showing area under the curve values of 0.831 (88.4% sensitivity, 63.8% specificity) and 0.907 (86.1% sensitivity, 82.2% specificity) in the training and validation cohorts, respectively. Consequently, the authors established an efficient approach for accurate evaluation of ACL function in KOA patients.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"8 1","pages":"14"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143998/pdf/","citationCount":"0","resultStr":"{\"title\":\"Radiographic prediction model based on X-rays predicting anterior cruciate ligament function in patients with knee osteoarthritis.\",\"authors\":\"Guanghan Gao, Yaonan Zhang, Lei Shi, Lin Wang, Fei Wang, Qingyun Xue\",\"doi\":\"10.1186/s42492-025-00195-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Knee osteoarthritis (KOA) is a prevalent chronic condition in the elderly and is often associated with instability caused by anterior cruciate ligament (ACL) degeneration. The functional integrity of ACL is crucial for the diagnosis and treatment of KOA. Radiographic imaging is a practical diagnostic tool for predicting the functional status of the ACL. However, the precision of the current evaluation methodologies remains suboptimal. Consequently, we aimed to identify additional radiographic features from X-ray images that could predict the ACL function in a larger cohort of patients with KOA. A retrospective analysis was conducted on 272 patients whose ACL function was verified intraoperatively between October 2021 and October 2024. The patients were categorized into ACL-functional and ACL-dysfunctional groups. Using least absolute shrinkage and selection operator regression and logistic regression, four significant radiographic predictors were identified: location of the deepest wear on the medial tibial plateau (middle and posterior), wear depth in the posterior third of the medial tibial plateau (> 1.40 mm), posterior tibial slope (PTS > 7.90°), and static anterior tibial translation (> 4.49 mm). A clinical prediction model was developed and visualized using a nomogram with calibration curves and receiver operating characteristic analysis to confirm the model performance. The prediction model demonstrated great discriminative ability, showing area under the curve values of 0.831 (88.4% sensitivity, 63.8% specificity) and 0.907 (86.1% sensitivity, 82.2% specificity) in the training and validation cohorts, respectively. Consequently, the authors established an efficient approach for accurate evaluation of ACL function in KOA patients.</p>\",\"PeriodicalId\":29931,\"journal\":{\"name\":\"Visual Computing for Industry Biomedicine and Art\",\"volume\":\"8 1\",\"pages\":\"14\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143998/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Computing for Industry Biomedicine and Art\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-025-00195-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry Biomedicine and Art","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-025-00195-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

膝关节骨性关节炎(KOA)是老年人常见的慢性疾病,通常与前交叉韧带(ACL)变性引起的不稳定有关。前交叉韧带的功能完整性对KOA的诊断和治疗至关重要。影像学是预测前交叉韧带功能状态的实用诊断工具。然而,目前评价方法的精度仍然不够理想。因此,我们的目的是从x线图像中确定可以预测更大队列KOA患者ACL功能的其他放射学特征。回顾性分析了2021年10月至2024年10月期间术中验证ACL功能的272例患者。将患者分为acl功能组和acl功能不全组。使用最小绝对收缩、选择操作者回归和逻辑回归,确定了四个重要的放射学预测指标:胫骨内侧平台最深磨损的位置(中部和后部)、胫骨内侧平台后三分之一的磨损深度(> 1.40 mm)、胫骨后斜度(PTS > 7.90°)和胫骨前静态平移(> 4.49 mm)。建立了一个临床预测模型,并使用带有校准曲线的nomogram和receiver operating characteristic analysis来验证模型的性能。该预测模型具有较强的判别能力,在训练组和验证组的曲线下面积分别为0.831(敏感性88.4%,特异性63.8%)和0.907(敏感性86.1%,特异性82.2%)。因此,作者建立了一种有效的方法来准确评估KOA患者的ACL功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiographic prediction model based on X-rays predicting anterior cruciate ligament function in patients with knee osteoarthritis.

Knee osteoarthritis (KOA) is a prevalent chronic condition in the elderly and is often associated with instability caused by anterior cruciate ligament (ACL) degeneration. The functional integrity of ACL is crucial for the diagnosis and treatment of KOA. Radiographic imaging is a practical diagnostic tool for predicting the functional status of the ACL. However, the precision of the current evaluation methodologies remains suboptimal. Consequently, we aimed to identify additional radiographic features from X-ray images that could predict the ACL function in a larger cohort of patients with KOA. A retrospective analysis was conducted on 272 patients whose ACL function was verified intraoperatively between October 2021 and October 2024. The patients were categorized into ACL-functional and ACL-dysfunctional groups. Using least absolute shrinkage and selection operator regression and logistic regression, four significant radiographic predictors were identified: location of the deepest wear on the medial tibial plateau (middle and posterior), wear depth in the posterior third of the medial tibial plateau (> 1.40 mm), posterior tibial slope (PTS > 7.90°), and static anterior tibial translation (> 4.49 mm). A clinical prediction model was developed and visualized using a nomogram with calibration curves and receiver operating characteristic analysis to confirm the model performance. The prediction model demonstrated great discriminative ability, showing area under the curve values of 0.831 (88.4% sensitivity, 63.8% specificity) and 0.907 (86.1% sensitivity, 82.2% specificity) in the training and validation cohorts, respectively. Consequently, the authors established an efficient approach for accurate evaluation of ACL function in KOA patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信