Guanghan Gao, Yaonan Zhang, Lei Shi, Lin Wang, Fei Wang, Qingyun Xue
{"title":"基于x线预测膝关节骨关节炎患者前交叉韧带功能的x线预测模型。","authors":"Guanghan Gao, Yaonan Zhang, Lei Shi, Lin Wang, Fei Wang, Qingyun Xue","doi":"10.1186/s42492-025-00195-w","DOIUrl":null,"url":null,"abstract":"<p><p>Knee osteoarthritis (KOA) is a prevalent chronic condition in the elderly and is often associated with instability caused by anterior cruciate ligament (ACL) degeneration. The functional integrity of ACL is crucial for the diagnosis and treatment of KOA. Radiographic imaging is a practical diagnostic tool for predicting the functional status of the ACL. However, the precision of the current evaluation methodologies remains suboptimal. Consequently, we aimed to identify additional radiographic features from X-ray images that could predict the ACL function in a larger cohort of patients with KOA. A retrospective analysis was conducted on 272 patients whose ACL function was verified intraoperatively between October 2021 and October 2024. The patients were categorized into ACL-functional and ACL-dysfunctional groups. Using least absolute shrinkage and selection operator regression and logistic regression, four significant radiographic predictors were identified: location of the deepest wear on the medial tibial plateau (middle and posterior), wear depth in the posterior third of the medial tibial plateau (> 1.40 mm), posterior tibial slope (PTS > 7.90°), and static anterior tibial translation (> 4.49 mm). A clinical prediction model was developed and visualized using a nomogram with calibration curves and receiver operating characteristic analysis to confirm the model performance. The prediction model demonstrated great discriminative ability, showing area under the curve values of 0.831 (88.4% sensitivity, 63.8% specificity) and 0.907 (86.1% sensitivity, 82.2% specificity) in the training and validation cohorts, respectively. Consequently, the authors established an efficient approach for accurate evaluation of ACL function in KOA patients.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"8 1","pages":"14"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143998/pdf/","citationCount":"0","resultStr":"{\"title\":\"Radiographic prediction model based on X-rays predicting anterior cruciate ligament function in patients with knee osteoarthritis.\",\"authors\":\"Guanghan Gao, Yaonan Zhang, Lei Shi, Lin Wang, Fei Wang, Qingyun Xue\",\"doi\":\"10.1186/s42492-025-00195-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Knee osteoarthritis (KOA) is a prevalent chronic condition in the elderly and is often associated with instability caused by anterior cruciate ligament (ACL) degeneration. The functional integrity of ACL is crucial for the diagnosis and treatment of KOA. Radiographic imaging is a practical diagnostic tool for predicting the functional status of the ACL. However, the precision of the current evaluation methodologies remains suboptimal. Consequently, we aimed to identify additional radiographic features from X-ray images that could predict the ACL function in a larger cohort of patients with KOA. A retrospective analysis was conducted on 272 patients whose ACL function was verified intraoperatively between October 2021 and October 2024. The patients were categorized into ACL-functional and ACL-dysfunctional groups. Using least absolute shrinkage and selection operator regression and logistic regression, four significant radiographic predictors were identified: location of the deepest wear on the medial tibial plateau (middle and posterior), wear depth in the posterior third of the medial tibial plateau (> 1.40 mm), posterior tibial slope (PTS > 7.90°), and static anterior tibial translation (> 4.49 mm). A clinical prediction model was developed and visualized using a nomogram with calibration curves and receiver operating characteristic analysis to confirm the model performance. The prediction model demonstrated great discriminative ability, showing area under the curve values of 0.831 (88.4% sensitivity, 63.8% specificity) and 0.907 (86.1% sensitivity, 82.2% specificity) in the training and validation cohorts, respectively. Consequently, the authors established an efficient approach for accurate evaluation of ACL function in KOA patients.</p>\",\"PeriodicalId\":29931,\"journal\":{\"name\":\"Visual Computing for Industry Biomedicine and Art\",\"volume\":\"8 1\",\"pages\":\"14\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143998/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Computing for Industry Biomedicine and Art\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-025-00195-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry Biomedicine and Art","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-025-00195-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Radiographic prediction model based on X-rays predicting anterior cruciate ligament function in patients with knee osteoarthritis.
Knee osteoarthritis (KOA) is a prevalent chronic condition in the elderly and is often associated with instability caused by anterior cruciate ligament (ACL) degeneration. The functional integrity of ACL is crucial for the diagnosis and treatment of KOA. Radiographic imaging is a practical diagnostic tool for predicting the functional status of the ACL. However, the precision of the current evaluation methodologies remains suboptimal. Consequently, we aimed to identify additional radiographic features from X-ray images that could predict the ACL function in a larger cohort of patients with KOA. A retrospective analysis was conducted on 272 patients whose ACL function was verified intraoperatively between October 2021 and October 2024. The patients were categorized into ACL-functional and ACL-dysfunctional groups. Using least absolute shrinkage and selection operator regression and logistic regression, four significant radiographic predictors were identified: location of the deepest wear on the medial tibial plateau (middle and posterior), wear depth in the posterior third of the medial tibial plateau (> 1.40 mm), posterior tibial slope (PTS > 7.90°), and static anterior tibial translation (> 4.49 mm). A clinical prediction model was developed and visualized using a nomogram with calibration curves and receiver operating characteristic analysis to confirm the model performance. The prediction model demonstrated great discriminative ability, showing area under the curve values of 0.831 (88.4% sensitivity, 63.8% specificity) and 0.907 (86.1% sensitivity, 82.2% specificity) in the training and validation cohorts, respectively. Consequently, the authors established an efficient approach for accurate evaluation of ACL function in KOA patients.