Sebastian Künzel, Tanja Munz-Körner, Pascal Tilli, Noel Schäfer, Sandeep Vidyapu, Ngoc Thang Vu, Daniel Weiskopf
{"title":"基于图形的视觉问答和场景图形策展的视觉可解释人工智能。","authors":"Sebastian Künzel, Tanja Munz-Körner, Pascal Tilli, Noel Schäfer, Sandeep Vidyapu, Ngoc Thang Vu, Daniel Weiskopf","doi":"10.1186/s42492-025-00185-y","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a novel visualization approach to explainable artificial intelligence for graph-based visual question answering (VQA) systems. The method focuses on identifying false answer predictions by the model and offers users the opportunity to directly correct mistakes in the input space, thus facilitating dataset curation. The decision-making process of the model is demonstrated by highlighting certain internal states of a graph neural network (GNN). The proposed system is built on top of a GraphVQA framework that implements various GNN-based models for VQA trained on the GQA dataset. The authors evaluated their tool through the demonstration of identified use cases, quantitative measures, and a user study conducted with experts from machine learning, visualization, and natural language processing domains. The authors' findings highlight the prominence of their implemented features in supporting the users with incorrect prediction identification and identifying the underlying issues. Additionally, their approach is easily extendable to similar models aiming at graph-based question answering.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"8 1","pages":"9"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual explainable artificial intelligence for graph-based visual question answering and scene graph curation.\",\"authors\":\"Sebastian Künzel, Tanja Munz-Körner, Pascal Tilli, Noel Schäfer, Sandeep Vidyapu, Ngoc Thang Vu, Daniel Weiskopf\",\"doi\":\"10.1186/s42492-025-00185-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents a novel visualization approach to explainable artificial intelligence for graph-based visual question answering (VQA) systems. The method focuses on identifying false answer predictions by the model and offers users the opportunity to directly correct mistakes in the input space, thus facilitating dataset curation. The decision-making process of the model is demonstrated by highlighting certain internal states of a graph neural network (GNN). The proposed system is built on top of a GraphVQA framework that implements various GNN-based models for VQA trained on the GQA dataset. The authors evaluated their tool through the demonstration of identified use cases, quantitative measures, and a user study conducted with experts from machine learning, visualization, and natural language processing domains. The authors' findings highlight the prominence of their implemented features in supporting the users with incorrect prediction identification and identifying the underlying issues. Additionally, their approach is easily extendable to similar models aiming at graph-based question answering.</p>\",\"PeriodicalId\":29931,\"journal\":{\"name\":\"Visual Computing for Industry Biomedicine and Art\",\"volume\":\"8 1\",\"pages\":\"9\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Computing for Industry Biomedicine and Art\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-025-00185-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry Biomedicine and Art","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-025-00185-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Visual explainable artificial intelligence for graph-based visual question answering and scene graph curation.
This study presents a novel visualization approach to explainable artificial intelligence for graph-based visual question answering (VQA) systems. The method focuses on identifying false answer predictions by the model and offers users the opportunity to directly correct mistakes in the input space, thus facilitating dataset curation. The decision-making process of the model is demonstrated by highlighting certain internal states of a graph neural network (GNN). The proposed system is built on top of a GraphVQA framework that implements various GNN-based models for VQA trained on the GQA dataset. The authors evaluated their tool through the demonstration of identified use cases, quantitative measures, and a user study conducted with experts from machine learning, visualization, and natural language processing domains. The authors' findings highlight the prominence of their implemented features in supporting the users with incorrect prediction identification and identifying the underlying issues. Additionally, their approach is easily extendable to similar models aiming at graph-based question answering.