基于图形的视觉问答和场景图形策展的视觉可解释人工智能。

IF 3.2 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Sebastian Künzel, Tanja Munz-Körner, Pascal Tilli, Noel Schäfer, Sandeep Vidyapu, Ngoc Thang Vu, Daniel Weiskopf
{"title":"基于图形的视觉问答和场景图形策展的视觉可解释人工智能。","authors":"Sebastian Künzel, Tanja Munz-Körner, Pascal Tilli, Noel Schäfer, Sandeep Vidyapu, Ngoc Thang Vu, Daniel Weiskopf","doi":"10.1186/s42492-025-00185-y","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a novel visualization approach to explainable artificial intelligence for graph-based visual question answering (VQA) systems. The method focuses on identifying false answer predictions by the model and offers users the opportunity to directly correct mistakes in the input space, thus facilitating dataset curation. The decision-making process of the model is demonstrated by highlighting certain internal states of a graph neural network (GNN). The proposed system is built on top of a GraphVQA framework that implements various GNN-based models for VQA trained on the GQA dataset. The authors evaluated their tool through the demonstration of identified use cases, quantitative measures, and a user study conducted with experts from machine learning, visualization, and natural language processing domains. The authors' findings highlight the prominence of their implemented features in supporting the users with incorrect prediction identification and identifying the underlying issues. Additionally, their approach is easily extendable to similar models aiming at graph-based question answering.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"8 1","pages":"9"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual explainable artificial intelligence for graph-based visual question answering and scene graph curation.\",\"authors\":\"Sebastian Künzel, Tanja Munz-Körner, Pascal Tilli, Noel Schäfer, Sandeep Vidyapu, Ngoc Thang Vu, Daniel Weiskopf\",\"doi\":\"10.1186/s42492-025-00185-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents a novel visualization approach to explainable artificial intelligence for graph-based visual question answering (VQA) systems. The method focuses on identifying false answer predictions by the model and offers users the opportunity to directly correct mistakes in the input space, thus facilitating dataset curation. The decision-making process of the model is demonstrated by highlighting certain internal states of a graph neural network (GNN). The proposed system is built on top of a GraphVQA framework that implements various GNN-based models for VQA trained on the GQA dataset. The authors evaluated their tool through the demonstration of identified use cases, quantitative measures, and a user study conducted with experts from machine learning, visualization, and natural language processing domains. The authors' findings highlight the prominence of their implemented features in supporting the users with incorrect prediction identification and identifying the underlying issues. Additionally, their approach is easily extendable to similar models aiming at graph-based question answering.</p>\",\"PeriodicalId\":29931,\"journal\":{\"name\":\"Visual Computing for Industry Biomedicine and Art\",\"volume\":\"8 1\",\"pages\":\"9\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Computing for Industry Biomedicine and Art\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-025-00185-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry Biomedicine and Art","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-025-00185-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究为基于图形的可视化问题解答(VQA)系统提出了一种新颖的可视化可解释人工智能方法。该方法的重点是识别模型预测的错误答案,并为用户提供直接纠正输入空间错误的机会,从而促进数据集的整理。通过突出图神经网络(GNN)的某些内部状态,展示了模型的决策过程。提议的系统建立在 GraphVQA 框架之上,该框架实现了在 GQA 数据集上训练的各种基于 GNN 的 VQA 模型。作者通过演示已确定的用例、定量测量以及与机器学习、可视化和自然语言处理领域的专家进行用户研究,对其工具进行了评估。作者的研究结果凸显了他们所实现的功能在支持用户识别错误预测和发现潜在问题方面的突出作用。此外,他们的方法很容易扩展到类似的基于图的问题解答模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual explainable artificial intelligence for graph-based visual question answering and scene graph curation.

This study presents a novel visualization approach to explainable artificial intelligence for graph-based visual question answering (VQA) systems. The method focuses on identifying false answer predictions by the model and offers users the opportunity to directly correct mistakes in the input space, thus facilitating dataset curation. The decision-making process of the model is demonstrated by highlighting certain internal states of a graph neural network (GNN). The proposed system is built on top of a GraphVQA framework that implements various GNN-based models for VQA trained on the GQA dataset. The authors evaluated their tool through the demonstration of identified use cases, quantitative measures, and a user study conducted with experts from machine learning, visualization, and natural language processing domains. The authors' findings highlight the prominence of their implemented features in supporting the users with incorrect prediction identification and identifying the underlying issues. Additionally, their approach is easily extendable to similar models aiming at graph-based question answering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信