ACS Measurement Science Au最新文献

筛选
英文 中文
Direct Glycan Analysis of Biological Samples and Intact Glycoproteins by Integrating Machine Learning-Driven Surface-Enhanced Raman Scattering and Boronic Acid Arrays 通过整合机器学习驱动的表面增强拉曼散射和硼酸阵列直接分析生物样本和完整糖蛋白
ACS Measurement Science Au Pub Date : 2024-05-15 DOI: 10.1021/acsmeasuresciau.4c00014
Qiang Hu,  and , Hung-Jen Wu*, 
{"title":"Direct Glycan Analysis of Biological Samples and Intact Glycoproteins by Integrating Machine Learning-Driven Surface-Enhanced Raman Scattering and Boronic Acid Arrays","authors":"Qiang Hu,&nbsp; and ,&nbsp;Hung-Jen Wu*,&nbsp;","doi":"10.1021/acsmeasuresciau.4c00014","DOIUrl":"10.1021/acsmeasuresciau.4c00014","url":null,"abstract":"<p >Frequent monitoring of glycan patterns is a critical step in studying glycan-mediated cellular processes. However, the current glycan analysis tools are resource-intensive and less suitable for routine use in standard laboratories. We developed a novel glycan detection platform by integrating surface-enhanced Raman spectroscopy (SERS), boronic acid (BA) receptors, and machine learning tools. This sensor monitors the molecular fingerprint spectra of BA binding to <i>cis</i>-diol-containing glycans. Different types of BA receptors could yield different stereoselective reactions toward different glycans and exhibit unique vibrational spectra. By integration of the Raman spectra collected from different BA receptors, the structural information can be enriched, eventually improving the accuracy of glycan classification and quantification. Here, we established a SERS-based sensor incorporating multiple different BA receptors. This sensing platform could directly analyze the biological samples, including whole milk and intact glycoproteins (fetuin and asialofetuin), without tedious glycan release and purification steps. The results demonstrate the platform’s ability to classify milk oligosaccharides with remarkable classification accuracy, despite the presence of other non-glycan constituents in the background. This sensor could also directly quantify sialylation levels of a fetuin/asialofetuin mixture without glycan release procedures. Moreover, by selecting appropriate BA receptors, the sensor exhibits an excellent performance of differentiating between α2,3 and α2,6 linkages of sialic acids. This low-cost, rapid, and highly accessible sensor will provide the scientific community with an invaluable tool for routine glycan screening in standard laboratories.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"4 3","pages":"307–314"},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140975285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of Uracil-Excising DNA Glycosylases in Cancer Cell Samples Using a Three-Dimensional DNAzyme Walker 利用三维 DNAzyme Walker 检测癌症细胞样本中的尿嘧啶-切除 DNA 糖基化酶
IF 4.6
ACS Measurement Science Au Pub Date : 2024-05-08 DOI: 10.1021/acsmeasuresciau.4c0001110.1021/acsmeasuresciau.4c00011
Jeffrey Tao, Hongquan Zhang*, Michael Weinfeld and X. Chris Le*, 
{"title":"Detection of Uracil-Excising DNA Glycosylases in Cancer Cell Samples Using a Three-Dimensional DNAzyme Walker","authors":"Jeffrey Tao,&nbsp;Hongquan Zhang*,&nbsp;Michael Weinfeld and X. Chris Le*,&nbsp;","doi":"10.1021/acsmeasuresciau.4c0001110.1021/acsmeasuresciau.4c00011","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00011https://doi.org/10.1021/acsmeasuresciau.4c00011","url":null,"abstract":"<p >DNA glycosylase dysregulation is implicated in carcinogenesis and therapeutic resistance of cancers. Thus, various DNA-based detection platforms have been developed by leveraging the base excision activity of DNA glycosylases. However, the efficacy of DNA-based methods is hampered due to nonspecific degradation by nucleases commonly present in cancer cells and during preparations of cell lysates. In this report, we describe a fluorescence-based assay using a specific and nuclease-resistant three-dimensional DNAzyme walker to investigate the activity of DNA glycosylases from cancer cell lysates. We focus on DNA glycosylases that excise uracil from deoxyuridine (dU) lesions, namely, uracil DNA glycosylase (UDG) and single-stranded monofunctional uracil DNA glycosylase (SMUG1). The limits of detection for detecting UDG and SMUG1 in the buffer were 3.2 and 3.0 pM, respectively. The DNAzyme walker detected uracil excision activity in diluted cancer cell lysate from as few as 48 A549 cells. The results of the UDG inhibitor experiments demonstrate that UDG is the predominant uracil-excising glycosylase in A549 cells. Approximately 500 nM of UDG is present in each A549 cell on average. No fluorescence was generated in the samples lacking DNAzyme activation, indicating that there was no nonspecific nuclease interference. The ability of the DNAzyme walker to respond to glycosylase activity illustrates the potential use of DNAzyme walker technology to monitor and study biochemical processes involving glycosylases.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"4 4","pages":"459–466 459–466"},"PeriodicalIF":4.6,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142010403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combating Prozone Effects and Predicting the Dynamic Range of Naked-Eye Nanoplasmonic Biosensors through Capture Bioentity Optimization 通过捕获生物特性优化消除原区效应并预测裸眼纳米光电生物传感器的动态范围
ACS Measurement Science Au Pub Date : 2024-05-08 DOI: 10.1021/acsmeasuresciau.4c00010
Zoe Bradley, Nikhil Bhalla
{"title":"Combating Prozone Effects and Predicting the Dynamic Range of Naked-Eye Nanoplasmonic Biosensors through Capture Bioentity Optimization","authors":"Zoe Bradley, Nikhil Bhalla","doi":"10.1021/acsmeasuresciau.4c00010","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00010","url":null,"abstract":"Accurately quantifying high analyte concentrations poses a challenge due to the common occurrence of the prozone or hook effect within sandwich assays utilized in plasmonic nanoparticle-based lateral flow devices (LFDs). As a result, LFDs are often underestimated compared to other biosensors with concerns surrounding their specificity and sensitivity toward the target analyte. To address this limitation, here we develop an analytical model capable of predicting the prozone effect and subsequently the dynamic range of the biosensor based on the concentration of the capture antibody. To support our model, we conduct a sandwich immunoassay to detect C-reactive protein (CRP) in a phosphate-buffered saline (PBS) buffer using an LFD. Within the experiment, we investigate the relationship between the CRP dynamic range and the prozone effect as a function of the capture antibody concentration, which is increased from 0.1 to 2 mg/mL. The experimental results, while supporting the developed analytical model, show that increasing the capture antibody concentration increases the dynamic range. The developed model therefore holds the potential to expand the measurable range and reduce costs associated with quantifying biomarkers in diverse diagnostic assays. This will ultimately allow LFDs to have better clinical significance before the prozone effect becomes dominant.","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combating Prozone Effects and Predicting the Dynamic Range of Naked-Eye Nanoplasmonic Biosensors through Capture Bioentity Optimization 通过捕获生物特性优化消除原区效应并预测裸眼纳米光电生物传感器的动态范围
IF 4.6
ACS Measurement Science Au Pub Date : 2024-05-08 DOI: 10.1021/acsmeasuresciau.4c0001010.1021/acsmeasuresciau.4c00010
Zoe Bradley,  and , Nikhil Bhalla*, 
{"title":"Combating Prozone Effects and Predicting the Dynamic Range of Naked-Eye Nanoplasmonic Biosensors through Capture Bioentity Optimization","authors":"Zoe Bradley,&nbsp; and ,&nbsp;Nikhil Bhalla*,&nbsp;","doi":"10.1021/acsmeasuresciau.4c0001010.1021/acsmeasuresciau.4c00010","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00010https://doi.org/10.1021/acsmeasuresciau.4c00010","url":null,"abstract":"<p >Accurately quantifying high analyte concentrations poses a challenge due to the common occurrence of the prozone or hook effect within sandwich assays utilized in plasmonic nanoparticle-based lateral flow devices (LFDs). As a result, LFDs are often underestimated compared to other biosensors with concerns surrounding their specificity and sensitivity toward the target analyte. To address this limitation, here we develop an analytical model capable of predicting the prozone effect and subsequently the dynamic range of the biosensor based on the concentration of the capture antibody. To support our model, we conduct a sandwich immunoassay to detect C-reactive protein (CRP) in a phosphate-buffered saline (PBS) buffer using an LFD. Within the experiment, we investigate the relationship between the CRP dynamic range and the prozone effect as a function of the capture antibody concentration, which is increased from 0.1 to 2 mg/mL. The experimental results, while supporting the developed analytical model, show that increasing the capture antibody concentration increases the dynamic range. The developed model therefore holds the potential to expand the measurable range and reduce costs associated with quantifying biomarkers in diverse diagnostic assays. This will ultimately allow LFDs to have better clinical significance before the prozone effect becomes dominant.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"4 4","pages":"452–458 452–458"},"PeriodicalIF":4.6,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142010402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of Uracil-Excising DNA Glycosylases in Cancer Cell Samples Using a Three-Dimensional DNAzyme Walker 利用三维 DNAzyme Walker 检测癌症细胞样本中的尿嘧啶-切除 DNA 糖基化酶
ACS Measurement Science Au Pub Date : 2024-05-08 DOI: 10.1021/acsmeasuresciau.4c00011
Jeffrey Tao, Hongquan Zhang, Michael Weinfeld, X. Chris Le
{"title":"Detection of Uracil-Excising DNA Glycosylases in Cancer Cell Samples Using a Three-Dimensional DNAzyme Walker","authors":"Jeffrey Tao, Hongquan Zhang, Michael Weinfeld, X. Chris Le","doi":"10.1021/acsmeasuresciau.4c00011","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00011","url":null,"abstract":"DNA glycosylase dysregulation is implicated in carcinogenesis and therapeutic resistance of cancers. Thus, various DNA-based detection platforms have been developed by leveraging the base excision activity of DNA glycosylases. However, the efficacy of DNA-based methods is hampered due to nonspecific degradation by nucleases commonly present in cancer cells and during preparations of cell lysates. In this report, we describe a fluorescence-based assay using a specific and nuclease-resistant three-dimensional DNAzyme walker to investigate the activity of DNA glycosylases from cancer cell lysates. We focus on DNA glycosylases that excise uracil from deoxyuridine (dU) lesions, namely, uracil DNA glycosylase (UDG) and single-stranded monofunctional uracil DNA glycosylase (SMUG1). The limits of detection for detecting UDG and SMUG1 in the buffer were 3.2 and 3.0 pM, respectively. The DNAzyme walker detected uracil excision activity in diluted cancer cell lysate from as few as 48 A549 cells. The results of the UDG inhibitor experiments demonstrate that UDG is the predominant uracil-excising glycosylase in A549 cells. Approximately 500 nM of UDG is present in each A549 cell on average. No fluorescence was generated in the samples lacking DNAzyme activation, indicating that there was no nonspecific nuclease interference. The ability of the DNAzyme walker to respond to glycosylase activity illustrates the potential use of DNAzyme walker technology to monitor and study biochemical processes involving glycosylases.","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"2015 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Practical Guide to Large Amplitude Fourier-Transformed Alternating Current Voltammetry─What, How, and Why 大振幅傅立叶变换交流伏安法实用指南--内容、方法和原因
IF 4.6
ACS Measurement Science Au Pub Date : 2024-05-07 DOI: 10.1021/acsmeasuresciau.4c0000810.1021/acsmeasuresciau.4c00008
Natalia G. Baranska, Bryn Jones, Mark R. Dowsett, Chris Rhodes, Darrell M. Elton, Jie Zhang, Alan M. Bond, David Gavaghan, Henry O. Lloyd-Laney* and Alison Parkin*, 
{"title":"Practical Guide to Large Amplitude Fourier-Transformed Alternating Current Voltammetry─What, How, and Why","authors":"Natalia G. Baranska,&nbsp;Bryn Jones,&nbsp;Mark R. Dowsett,&nbsp;Chris Rhodes,&nbsp;Darrell M. Elton,&nbsp;Jie Zhang,&nbsp;Alan M. Bond,&nbsp;David Gavaghan,&nbsp;Henry O. Lloyd-Laney* and Alison Parkin*,&nbsp;","doi":"10.1021/acsmeasuresciau.4c0000810.1021/acsmeasuresciau.4c00008","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00008https://doi.org/10.1021/acsmeasuresciau.4c00008","url":null,"abstract":"<p >Fourier-transformed alternating current voltammetry (FTacV) is a technique utilizing a combination of a periodic (frequently sinusoidal) oscillation superimposed onto a staircase or linear potential ramp. The advanced utilization of a large amplitude sine wave induces substantial nonlinear current responses. Subsequent filter processing (via Fourier-transformation, band selection, followed by inverse Fourier-transformation) generates a series of harmonics in which rapid electron transfer processes may be separated from non-Faradaic and competing electron transfer processes with slower kinetics. Thus, FTacV enables the isolation of current associated with redox processes under experimental conditions that would not generate meaningful data using direct current voltammetry (dcV). In this study, the enhanced experimental sensitivity and selectivity of FTacV versus dcV are illustrated in measurements that (i) separate the Faradaic current from background current contributions, (ii) use a low (5 μM) concentration of analyte (exemplified with ferrocene), and (iii) enable discrimination of the reversible [Ru(NH<sub>3</sub>)<sub>6</sub>]<sup>3+/2+</sup> electron-transfer process from the irreversible reduction of oxygen under a standard atmosphere, negating the requirement for inert gas conditions. The simple, homebuilt check-cell described ensures that modern instruments can be checked for their ability to perform valid FTacV experiments. Detailed analysis methods and open-source data sets that accompany this work are intended to facilitate other researchers in the integration of FTacV into their everyday electrochemical methodological toolkit.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"4 4","pages":"418–431 418–431"},"PeriodicalIF":4.6,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142010401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Practical Guide to Large Amplitude Fourier-Transformed Alternating Current Voltammetry─What, How, and Why 大振幅傅立叶变换交流伏安法实用指南--内容、方法和原因
ACS Measurement Science Au Pub Date : 2024-05-07 DOI: 10.1021/acsmeasuresciau.4c00008
Natalia G. Baranska, Bryn Jones, Mark R. Dowsett, Chris Rhodes, Darrell M. Elton, Jie Zhang, Alan M. Bond, David Gavaghan, Henry O. Lloyd-Laney, Alison Parkin
{"title":"Practical Guide to Large Amplitude Fourier-Transformed Alternating Current Voltammetry─What, How, and Why","authors":"Natalia G. Baranska, Bryn Jones, Mark R. Dowsett, Chris Rhodes, Darrell M. Elton, Jie Zhang, Alan M. Bond, David Gavaghan, Henry O. Lloyd-Laney, Alison Parkin","doi":"10.1021/acsmeasuresciau.4c00008","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00008","url":null,"abstract":"Fourier-transformed alternating current voltammetry (FTacV) is a technique utilizing a combination of a periodic (frequently sinusoidal) oscillation superimposed onto a staircase or linear potential ramp. The advanced utilization of a large amplitude sine wave induces substantial nonlinear current responses. Subsequent filter processing (via Fourier-transformation, band selection, followed by inverse Fourier-transformation) generates a series of harmonics in which rapid electron transfer processes may be separated from non-Faradaic and competing electron transfer processes with slower kinetics. Thus, FTacV enables the isolation of current associated with redox processes under experimental conditions that would not generate meaningful data using direct current voltammetry (dcV). In this study, the enhanced experimental sensitivity and selectivity of FTacV versus dcV are illustrated in measurements that (i) separate the Faradaic current from background current contributions, (ii) use a low (5 μM) concentration of analyte (exemplified with ferrocene), and (iii) enable discrimination of the reversible [Ru(NH<sub>3</sub>)<sub>6</sub>]<sup>3+/2+</sup> electron-transfer process from the irreversible reduction of oxygen under a standard atmosphere, negating the requirement for inert gas conditions. The simple, homebuilt check-cell described ensures that modern instruments can be checked for their ability to perform valid FTacV experiments. Detailed analysis methods and open-source data sets that accompany this work are intended to facilitate other researchers in the integration of FTacV into their everyday electrochemical methodological toolkit.","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishing Quality Control Metrics for Large-Scale Plasma Proteomic Sample Preparation 建立大规模血浆蛋白质组样品制备的质量控制指标
IF 4.6
ACS Measurement Science Au Pub Date : 2024-04-29 DOI: 10.1021/acsmeasuresciau.3c0007010.1021/acsmeasuresciau.3c00070
Nekesa C. Oliver, Min Ji Choi, Albert B. Arul, Marsalas D. Whitaker and Renã A. S. Robinson*, 
{"title":"Establishing Quality Control Metrics for Large-Scale Plasma Proteomic Sample Preparation","authors":"Nekesa C. Oliver,&nbsp;Min Ji Choi,&nbsp;Albert B. Arul,&nbsp;Marsalas D. Whitaker and Renã A. S. Robinson*,&nbsp;","doi":"10.1021/acsmeasuresciau.3c0007010.1021/acsmeasuresciau.3c00070","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.3c00070https://doi.org/10.1021/acsmeasuresciau.3c00070","url":null,"abstract":"<p >Large-scale plasma proteomics studies have been transformed due to the multiplexing and automation of sample preparation workflows. However, these workflows can suffer from reproducibility issues, a lack of standardized quality control (QC) metrics, and the assessment of variation before liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. The incorporation of robust QC metrics in sample preparation workflows ensures better reproducibility, lower assay variation, and better-informed decisions for troubleshooting. Our laboratory conducted a plasma proteomics study of a cohort of patient samples (<i>N</i> = 808) using tandem mass tag (TMT) 16-plex batches (<i>N</i> = 58). The proteomic workflow consisted of protein depletion, protein digestion, TMT labeling, and fractionation. Five QC sample types (QC<sub>std</sub>, QC<sub>dig</sub>, QC<sub>pool</sub>, QC<sub>TMT</sub>, and QC<sub>BSA</sub>) were created to measure the performance of sample preparation prior to the final LC–MS/MS analysis. We measured &lt;10% CV for individual sample preparation steps in the proteomic workflow based on data from various QC sample steps. The establishment of robust measures for QC of sample preparation steps allowed for greater confidence in prepared samples for subsequent LC–MS/MS analysis. This study also provides recommendations for standardized QC metrics that can assist with future large-scale cohort sample preparation workflows.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"4 4","pages":"442–451 442–451"},"PeriodicalIF":4.6,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142010448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishing Quality Control Metrics for Large-Scale Plasma Proteomic Sample Preparation 建立大规模血浆蛋白质组样品制备的质量控制指标
ACS Measurement Science Au Pub Date : 2024-04-29 DOI: 10.1021/acsmeasuresciau.3c00070
Nekesa C. Oliver, Min Ji Choi, Albert B. Arul, Marsalas D. Whitaker, Renã A. S. Robinson
{"title":"Establishing Quality Control Metrics for Large-Scale Plasma Proteomic Sample Preparation","authors":"Nekesa C. Oliver, Min Ji Choi, Albert B. Arul, Marsalas D. Whitaker, Renã A. S. Robinson","doi":"10.1021/acsmeasuresciau.3c00070","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.3c00070","url":null,"abstract":"Large-scale plasma proteomics studies have been transformed due to the multiplexing and automation of sample preparation workflows. However, these workflows can suffer from reproducibility issues, a lack of standardized quality control (QC) metrics, and the assessment of variation before liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. The incorporation of robust QC metrics in sample preparation workflows ensures better reproducibility, lower assay variation, and better-informed decisions for troubleshooting. Our laboratory conducted a plasma proteomics study of a cohort of patient samples (<i>N</i> = 808) using tandem mass tag (TMT) 16-plex batches (<i>N</i> = 58). The proteomic workflow consisted of protein depletion, protein digestion, TMT labeling, and fractionation. Five QC sample types (QC<sub>std</sub>, QC<sub>dig</sub>, QC<sub>pool</sub>, QC<sub>TMT</sub>, and QC<sub>BSA</sub>) were created to measure the performance of sample preparation prior to the final LC–MS/MS analysis. We measured &lt;10% CV for individual sample preparation steps in the proteomic workflow based on data from various QC sample steps. The establishment of robust measures for QC of sample preparation steps allowed for greater confidence in prepared samples for subsequent LC–MS/MS analysis. This study also provides recommendations for standardized QC metrics that can assist with future large-scale cohort sample preparation workflows.","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"90 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paired Electrosynthesis at Interdigitated Microband Electrodes: Exploring Diffusion and Reaction Zones in the Absence of a Supporting Electrolyte 交织微带电极上的配对电合成:探索无支撑电解质时的扩散和反应区
ACS Measurement Science Au Pub Date : 2024-04-17 DOI: 10.1021/acsmeasuresciau.4c00009
Tingran Liu, Evaldo Batista Carneiro-Neto, Ernesto Pereira, James E. Taylor, Philip J. Fletcher and Frank Marken*, 
{"title":"Paired Electrosynthesis at Interdigitated Microband Electrodes: Exploring Diffusion and Reaction Zones in the Absence of a Supporting Electrolyte","authors":"Tingran Liu,&nbsp;Evaldo Batista Carneiro-Neto,&nbsp;Ernesto Pereira,&nbsp;James E. Taylor,&nbsp;Philip J. Fletcher and Frank Marken*,&nbsp;","doi":"10.1021/acsmeasuresciau.4c00009","DOIUrl":"10.1021/acsmeasuresciau.4c00009","url":null,"abstract":"<p >Electrosynthesis traditionally requires dedicated reactor systems and an added electrolyte, although some paired electrosynthesis processes are possible at interdigitated microband electrodes simply immersed in solution and without an intentionally added electrolyte. Here, 1,1′-ferrocenedimethanol oxidation and activated olefin electro-hydrogenation reactions are investigated as model processes at a Pt–Pt interdigitated microband array electrode with 5 μm width and with 5 μm interelectrode gap. Voltammetric responses for electro-hydrogenation are discussed, and product yields are determined in methanol (MeOH) in the presence/absence of an added electrolyte (LiClO<sub>4</sub>). An isotope effect is observed in CH<sub>3</sub>OD solvent, leading to olefin monodeuteration linked to a fast EC-type process close to the cathode surface (in the cathode reaction zone) rather than to charge annihilation in the interelectrode zone. A finite element simulation is employed to visualize/discuss reaction zones and to contrast the rate of charge annihilation processes with/without a supporting electrolyte.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"4 3","pages":"294–306"},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140616805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信