Stanley Feeney, Marissa Morales, Galen Arnold, Wynter Paiva, Eva Rose M. Balog and Jeffrey Mark Halpern*,
{"title":"Reproducibly Modified Elastin-like Polymer Gold Electrode Surfaces","authors":"Stanley Feeney, Marissa Morales, Galen Arnold, Wynter Paiva, Eva Rose M. Balog and Jeffrey Mark Halpern*, ","doi":"10.1021/acsmeasuresciau.5c00033","DOIUrl":null,"url":null,"abstract":"<p >Elastin-like polymers (ELPs) have been used for a variety of biomedical applications, including drug delivery and tissue scaffolding. ELPs are useful due to their adjustable lower critical solution temperature and tunable structure for different applications. However, despite ample characterization of ELPs in aqueous solutions, the characterization of ELPs on surfaces is less well explored. For example, sources of inconsistency in ELP modification to surfaces have yet to be explored in detail. Surface modifications of large macromolecules often suffer from poor reproducibility and inconsistent measurements. We developed and optimized a method for modifying a gold electrode surface with ELPs using a thiol-gold interaction through a single cysteine residue near the N-terminus. The modification parameters were tuned for reproducible charge-transfer resistance of the surface, as measured by electrochemical impedance spectroscopy. The final optimized surface modification parameters, without dimethyl sulfoxide or other cosurfactant treatment, are 0.0125 mg/mL ELP for 30 min at 4 °C in 3.5 mM TCEP in ultrahigh-purity water at pH 7.4. The relative amount of cysteine modified to gold versus ELP solution concentration was determined via thiol reduction. Using these data, the source of poor reproducibility was confirmed to be nonspecific polymer interactions.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 4","pages":"520–528"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsmeasuresciau.5c00033","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.5c00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Elastin-like polymers (ELPs) have been used for a variety of biomedical applications, including drug delivery and tissue scaffolding. ELPs are useful due to their adjustable lower critical solution temperature and tunable structure for different applications. However, despite ample characterization of ELPs in aqueous solutions, the characterization of ELPs on surfaces is less well explored. For example, sources of inconsistency in ELP modification to surfaces have yet to be explored in detail. Surface modifications of large macromolecules often suffer from poor reproducibility and inconsistent measurements. We developed and optimized a method for modifying a gold electrode surface with ELPs using a thiol-gold interaction through a single cysteine residue near the N-terminus. The modification parameters were tuned for reproducible charge-transfer resistance of the surface, as measured by electrochemical impedance spectroscopy. The final optimized surface modification parameters, without dimethyl sulfoxide or other cosurfactant treatment, are 0.0125 mg/mL ELP for 30 min at 4 °C in 3.5 mM TCEP in ultrahigh-purity water at pH 7.4. The relative amount of cysteine modified to gold versus ELP solution concentration was determined via thiol reduction. Using these data, the source of poor reproducibility was confirmed to be nonspecific polymer interactions.
期刊介绍:
ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.