Rongjing Yan, Qiang Hao, Pathum Wathudura, Max Wamsley, Willard E. Collier and Dongmao Zhang*,
{"title":"多道线偏振光谱仪,用于同时进行动态紫外-可见,偏振分辨-散射和光致发光测量","authors":"Rongjing Yan, Qiang Hao, Pathum Wathudura, Max Wamsley, Willard E. Collier and Dongmao Zhang*, ","doi":"10.1021/acsmeasuresciau.5c00022","DOIUrl":null,"url":null,"abstract":"<p >Dynamic systems, defined by their continuous temporal evolution, are central to advancements in chemistry, biology, and materials science. Optical techniques that leverage light absorption, scattering, and emission are essential for characterizing structural and property changes in these systems. However, conventional optical tools─such as UV–vis spectroscopy, fluorescence, and scattering techniques─provide fragmented or incomplete insights, making it challenging to comprehensively understand dynamic processes and ensure reliable data interpretation. Herein, we introduce a charge-coupled device (CCD)-based multitrack linearly polarized spectrometer (MLPS) designed for simultaneous kinetic UV–vis, polarization-resolved scattering, and photoluminescence measurements. The MLPS facilitates concurrent quantification of scattering and fluorescence intensities and depolarizations, alongside UV–vis extinction, with subsecond temporal resolution. By integrating high temporal resolution with the ability to capture complementary spectra, the MLPS significantly enhances the functionality of optical spectroscopy, paving the way for broader applications in dynamic system analysis and advancing research across multiple scientific disciplines. Furthermore, the instrument characterization and data preprocessing methodologies presented here provide valuable insights for the future development of multitrack CCD-based spectrometers.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 4","pages":"477–488"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsmeasuresciau.5c00022","citationCount":"0","resultStr":"{\"title\":\"Multitrack Linearly Polarized Spectrometer for Simultaneous Kinetic UV–Vis, Polarization-Resolved- Scattering, and Photoluminescence Measurements\",\"authors\":\"Rongjing Yan, Qiang Hao, Pathum Wathudura, Max Wamsley, Willard E. Collier and Dongmao Zhang*, \",\"doi\":\"10.1021/acsmeasuresciau.5c00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Dynamic systems, defined by their continuous temporal evolution, are central to advancements in chemistry, biology, and materials science. Optical techniques that leverage light absorption, scattering, and emission are essential for characterizing structural and property changes in these systems. However, conventional optical tools─such as UV–vis spectroscopy, fluorescence, and scattering techniques─provide fragmented or incomplete insights, making it challenging to comprehensively understand dynamic processes and ensure reliable data interpretation. Herein, we introduce a charge-coupled device (CCD)-based multitrack linearly polarized spectrometer (MLPS) designed for simultaneous kinetic UV–vis, polarization-resolved scattering, and photoluminescence measurements. The MLPS facilitates concurrent quantification of scattering and fluorescence intensities and depolarizations, alongside UV–vis extinction, with subsecond temporal resolution. By integrating high temporal resolution with the ability to capture complementary spectra, the MLPS significantly enhances the functionality of optical spectroscopy, paving the way for broader applications in dynamic system analysis and advancing research across multiple scientific disciplines. Furthermore, the instrument characterization and data preprocessing methodologies presented here provide valuable insights for the future development of multitrack CCD-based spectrometers.</p>\",\"PeriodicalId\":29800,\"journal\":{\"name\":\"ACS Measurement Science Au\",\"volume\":\"5 4\",\"pages\":\"477–488\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsmeasuresciau.5c00022\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Measurement Science Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.5c00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.5c00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Multitrack Linearly Polarized Spectrometer for Simultaneous Kinetic UV–Vis, Polarization-Resolved- Scattering, and Photoluminescence Measurements
Dynamic systems, defined by their continuous temporal evolution, are central to advancements in chemistry, biology, and materials science. Optical techniques that leverage light absorption, scattering, and emission are essential for characterizing structural and property changes in these systems. However, conventional optical tools─such as UV–vis spectroscopy, fluorescence, and scattering techniques─provide fragmented or incomplete insights, making it challenging to comprehensively understand dynamic processes and ensure reliable data interpretation. Herein, we introduce a charge-coupled device (CCD)-based multitrack linearly polarized spectrometer (MLPS) designed for simultaneous kinetic UV–vis, polarization-resolved scattering, and photoluminescence measurements. The MLPS facilitates concurrent quantification of scattering and fluorescence intensities and depolarizations, alongside UV–vis extinction, with subsecond temporal resolution. By integrating high temporal resolution with the ability to capture complementary spectra, the MLPS significantly enhances the functionality of optical spectroscopy, paving the way for broader applications in dynamic system analysis and advancing research across multiple scientific disciplines. Furthermore, the instrument characterization and data preprocessing methodologies presented here provide valuable insights for the future development of multitrack CCD-based spectrometers.
期刊介绍:
ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.