Small SciencePub Date : 2024-08-13DOI: 10.1002/smsc.202400257
Md Mofasser Mallick, Leonard Franke, Mohamed Hussein, Andres Georg Rösch, Zhongmin Long, Yolita Maria Eggeler, Uli Lemmer
{"title":"Printed Lateral p–n Junction for Thermoelectric Generation","authors":"Md Mofasser Mallick, Leonard Franke, Mohamed Hussein, Andres Georg Rösch, Zhongmin Long, Yolita Maria Eggeler, Uli Lemmer","doi":"10.1002/smsc.202400257","DOIUrl":"https://doi.org/10.1002/smsc.202400257","url":null,"abstract":"Printed thermoelectric generators (TEGs) show promising potential for converting waste heat into useful electricity at a low cost but fall short of exhibiting a conversion efficiency anticipated from materials’ properties. The output power of conventionally printed TEGs in the “π-type” geometry suffers due to low thermal voltage and low current because of high thermal and electrical contact resistance, respectively. Herein, a type of printed p–n junction TEGs (PN-TEGs) as a possible remedy is explored. Two printed PN-TEGs with different thicknesses are fabricated using printed p-type Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> and n-type Bi<sub>2</sub>Te<sub>2.7</sub>Se<sub>0.3</sub> materials. The PN-TEGs show a promising way to minimize the influence of thermal and electrical resistance in printed TEGs. In the experimental and simulation results, the significant impact of PN-TEGs’ dimensions on their power outputs is revealed. Also, a conventional “π-type” printed TEG is fabricated and its performance is studied. The optimized PN-TEG with a single thermocouple yields ≈14 times higher power output density of 5.3 μW cm<sup>−2</sup> at a Δ<i>T</i> of 25 K compared to “π-type” printed TEGs.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-08-12DOI: 10.1002/smsc.202400183
Chia-Chi Chang, Min-Hsien Shen, Yuan-Shuo Hsu, Hsisheng Teng, Jeng-Shiung Jan
{"title":"In Situ Formed Composite Polymer Electrolytes Based on Anion-Trapping Boron Moiety and Polyhedral Oligomeric Silsesquioxane for High Performance Lithium Metal Batteries","authors":"Chia-Chi Chang, Min-Hsien Shen, Yuan-Shuo Hsu, Hsisheng Teng, Jeng-Shiung Jan","doi":"10.1002/smsc.202400183","DOIUrl":"https://doi.org/10.1002/smsc.202400183","url":null,"abstract":"Quasi-solid and composite polymer electrolytes (QSPEs and CPEs) used in lithium-ion battery (LIB) have recently been a novel strategy owing to their high-safety comparing to traditional liquid counterparts. This study reported the preparation of CPEs based on boron moiety, poly(ethylene glycol) (PEG), and octahedral polyhedral oligomeric silsesquioxane (POSS) via in situ thermal polymerization method directly onto the lithium anode to improve the interfacial contact and electrochemical performance. The synergistic effect between the incorporation of anion-trapping boron moiety and in situ polymerization rendered the QSPEs exhibiting higher electrochemical voltage window, ionic conductivity, and transference number as well as better electrochemical performance than the PEG-based counterpart. Due to the Lewis acid effect, anion-trapping boron moiety could promote the dissociation of lithium salts, allowing more lithium ions to be in the free state, thereby enhancing the lithium-ion conductivity. With an optimal addition of POSS, the as-prepared CPEs exhibited lower overpotential during the lithium plating-stripping test and better electrochemical performance than the QSPE counterparts. The optimal POSS addition could facilitate the lithium-ion conduction and establishment of continuous ion pathways, further improving their electrochemical performance. This study pointed a promising approach for developing high performance lithium-ion batteries.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-08-12DOI: 10.1002/smsc.202400078
Manoj Settem, Melisa M. Gianetti, Roberto Guerra, Nicola Manini, Riccardo Ferrando, Alberto Giacomello
{"title":"Gold Clusters on Graphene/Graphite—Structure and Energy Landscape","authors":"Manoj Settem, Melisa M. Gianetti, Roberto Guerra, Nicola Manini, Riccardo Ferrando, Alberto Giacomello","doi":"10.1002/smsc.202400078","DOIUrl":"https://doi.org/10.1002/smsc.202400078","url":null,"abstract":"Adopting an advanced microscopic model of the Au–graphite interaction, a systematic study of Au nanoclusters (up to sizes of 11 238 atoms) on graphene and on graphite is carried out to explore their structure and energy landscape. Using parallel tempering molecular dynamics, structural distribution as a function of temperature is calculated in the entire temperature range. Low-energy structures are identified through a combination of structural optimization and Wulff–Kaischew construction which are then used to explore the energy landscape. The potential energy surface (PES), which is energy as a function of translation and rotation, is calculated for a few Au nanoclusters along specific directions on carbon lattice. Minimum-energy pathways are identified on the PES indicating a reduced barrier for pathways involving simultaneous rotation and translation. Diffusion simulations of Au<sub>233</sub> on graphite show that diffusion mechanism is directly related to the PES, and the information of the cluster pinning events is already present in the PES. Finally, a comparison of various interaction models highlights the importance of reasonably correct Au–C interactions which is crucial for studying the energy landscape and cluster sliding.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-08-11DOI: 10.1002/smsc.202400182
Florian Mayer, Paul Schweng, Simone Braeuer, Sebastian Hummer, Gunda Koellensperger, Andreas Mautner, Robert Woodward, Alexander Bismarck
{"title":"Best of Both Worlds: Adsorptive Ultrafiltration Nanocellulose-Hypercrosslinked Polymer Hybrid Membranes for Metal Ion Removal","authors":"Florian Mayer, Paul Schweng, Simone Braeuer, Sebastian Hummer, Gunda Koellensperger, Andreas Mautner, Robert Woodward, Alexander Bismarck","doi":"10.1002/smsc.202400182","DOIUrl":"https://doi.org/10.1002/smsc.202400182","url":null,"abstract":"Efficient water treatment ideally combines ion exchange for the removal of hardness elements and toxic trace metals as well as ultrafiltration for the removal of particulate matter. Although promising for adsorption, many high-surface-area polymer materials cannot be easily processed into freestanding membranes or packed bed columns, due to poor solution processability and high back pressures, respectively. The preparation of hybrid membranes comprising sulfonated hypercrosslinked polymers entrapped in nanocellulose papers is described. The hybrid membranes are effective for simultaneous ultrafiltration and ion exchange. Increasing the polymer loading of the hybrid membrane produces synergy by increasing the permeance of the membranes while enhancing the ion adsorption capacity to values exceeding those of bulk hypercrosslinked polymers. The maximum ion adsorption capacity for copper is determined to be ≈100 mg g<sup>−1</sup> outperforming that of pure polymer (71 mg g<sup>−1</sup>) and commercially available ion exchange resins. Competitive adsorption is tested in samples containing water hardness elements and trace toxic metal ions showing high ion-exchange capacities. Even when fully loaded with water hardness elements, Ba<sup>2+</sup> and Sr<sup>2+</sup> are still removed from solution.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deep Learning‐Based Classification of Histone–DNA Interactions Using Drying Droplet Patterns","authors":"Safoura Vaez, Bahar Dadfar, Meike Koenig, Matthias Franzreb, Joerg Lahann","doi":"10.1002/smsc.202400252","DOIUrl":"https://doi.org/10.1002/smsc.202400252","url":null,"abstract":"Developing scalable and accurate predictive analytical methods for the classification of protein‐DNA binding is critical for advancing our understanding of molecular biology, disease mechanisms, and a wide spectrum of biotechnological and medical applications. It is discovered that histone–DNA interactions can be stratified based on stain patterns created by the deposition of various nucleoprotein solutions onto a substrate. In this study, a deep‐learning neural network is applied to categorize polarized light microscopy images of drying droplet deposits originating from different histone–DNA mixtures. These DNA stain patterns featured high reproducibility across different species and thus enabled comprehensive DNA categorization (100% accuracy) and accurate prediction of their respective binding affinities to histones. Eukaryotic DNA, which has a higher binding affinity to mammalian histones than prokaryotic DNA, is associated with a higher overall prediction accuracy. For a given species, the average prediction accuracy increased with DNA size. To demonstrate generalizability, a pre‐trained CNN is challenged with unknown images that originated from DNA samples of species not included in the training set. The CNN classified these unknown histone‐DNA samples as either strong or medium binders with 84.4% and 96.25% accuracy, respectively.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":11.1,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141920714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-08-10DOI: 10.1002/smsc.202400154
Fabian A C Apfelbeck, J. E. Heger, Tianle Zheng, Tianfu Guan, M. Schwartzkopf, Stephan V. Roth, Peter Müller‐Buschbaum
{"title":"Influence of the Polymer Binder Composition on the Charge Transfer Resistance, Morphology, and Crystallinity of LiFePO4 Electrodes Revealed by Electrochemical Impedance Spectroscopy and Grazing Incidence Small‐ and Wide‐Angle X‐ray Scattering","authors":"Fabian A C Apfelbeck, J. E. Heger, Tianle Zheng, Tianfu Guan, M. Schwartzkopf, Stephan V. Roth, Peter Müller‐Buschbaum","doi":"10.1002/smsc.202400154","DOIUrl":"https://doi.org/10.1002/smsc.202400154","url":null,"abstract":"Electrode materials for application in lithium‐ion batteries are commonly probed by X‐ray diffraction (XRD) to investigate their crystalline structure. Grazing incidence wide‐angle X‐ray scattering (GIWAXS) is an extension to XRD since in‐plane structures are also accessible. Additionally, with grazing incidence small‐angle X‐ray scattering (GISAXS), morphological information on the nanoscale can be revealed. In this work, the nanostructure of battery electrodes, which consist of lithium iron phosphate (LiFePO4) as active material, carbon black (CB) as conducting agent, and the polymeric binders polyvinylidenefluoride (PVDF) and poly((trifluoromethane) sulfonimide lithium styrene) (PSTFSILi) is studied by performing GISAXS and GIWAXS. The chemical nature of the binder is tuned by blending PVDF and PSTFSILi. Specifically, a series of LiFePO4 electrodes with polymer blends of the common, non‐conducting PVDF and the single‐ion conducting PSTFSILi with different weight ratios as binders is investigated to understand the influence of the binder on the structure of the electrode in detail. Scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) complement these studies to correlate the morphology and structure with the electrochemical behavior. It is found that LiFePO4 crystallites do not exhibit any preferred orientation with respect to the substrate, irrespective of the binder composition, but their size depends on the binder composition.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":11.1,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141920339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-08-10DOI: 10.1002/smsc.202400259
Lara González‐Cabaleiro, Carlos Fernández-Lodeiro, Lorena Vázquez-Iglesias, Pablo Soriano‐Maldonado, Mark J van Raaij, Gustavo Bodelón, J. Pérez‐Juste, I. Pastoriza‐Santos
{"title":"Pushing the Limits of Lateral Flow Immunoassay by Digital SERS for the Ultralow Detection of SARS‐CoV‐2 Virus","authors":"Lara González‐Cabaleiro, Carlos Fernández-Lodeiro, Lorena Vázquez-Iglesias, Pablo Soriano‐Maldonado, Mark J van Raaij, Gustavo Bodelón, J. Pérez‐Juste, I. Pastoriza‐Santos","doi":"10.1002/smsc.202400259","DOIUrl":"https://doi.org/10.1002/smsc.202400259","url":null,"abstract":"\u0000Lateral flow immunoassays (LFIAs) are easy‐to‐use antigen tests that provide different signal readouts, with colorimetric readouts being the most commonly used. However, these analytical devices have relatively low sensitivity and produce semiquantitative results, limiting their diagnostic applications. Herein, we address these challenges by implementing a digital surface‐enhanced Raman spectroscopy (SERS)‐based LFIA for the accurate and ultrasensitive quantitative detection of SARS‐CoV‐2 nucleocapsid (N) protein. Compared with average SERS intensity measurements, the digital approach allowed to overcome fluctuations in Raman scattering signals, thereby increasing the analytical sensitivity of the assay. Our method exhibited a quantification range of the viral protein in nasal swabs from 0.001 to 10 pg mL−1, and a limit of detection down to 1.9 aM (0.9 fg mL−1), improving colorimetric LFIAs and conventional‐SERS‐based LFIAs by several orders of magnitude. Importantly, this approach shows an analytical sensitivity of 0.03 TCID50 mL−1, which is greater than that reported by other immunoassays. In conclusion, we successfully demonstrate the robust detection and quantification of SARS‐CoV‐2N protein in nasal swabs at ultralow concentrations. The improvement in the sensitivity of LFIA by digital SERS may pave the way to translate this technology into the diagnostic arena for the ultrasensitive detection of microbes and disease biomarkers.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":11.1,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141920987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-08-08DOI: 10.1002/smsc.202470033
Sean Lethbridge, Theodoros Pavloudis, James McCormack, Thomas Slater, Joseph Kioseoglou, Richard E. Palmer
{"title":"Stabilization of 2D Raft Structures of Au Nanoclusters with up to 60 Atoms by a Carbon Support","authors":"Sean Lethbridge, Theodoros Pavloudis, James McCormack, Thomas Slater, Joseph Kioseoglou, Richard E. Palmer","doi":"10.1002/smsc.202470033","DOIUrl":"https://doi.org/10.1002/smsc.202470033","url":null,"abstract":"<b>Gold Nanoclusters</b>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}