Hybrid Photoelectrodes Based on Electropolymerized Conjugated Porous Polymers for Enhanced Solar Energy Conversion.

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-02-20 eCollection Date: 2025-06-01 DOI:10.1002/smsc.202400623
Elena Alfonso-González, Miguel Gomez-Mendoza, Carmen G López-Calixto, Miguel García-Tecedor, Ignacio J Villar-García, Freddy Oropeza, Marta Liras, Mariam Barawi Moran, Víctor A de la Peña O Shea
{"title":"Hybrid Photoelectrodes Based on Electropolymerized Conjugated Porous Polymers for Enhanced Solar Energy Conversion.","authors":"Elena Alfonso-González, Miguel Gomez-Mendoza, Carmen G López-Calixto, Miguel García-Tecedor, Ignacio J Villar-García, Freddy Oropeza, Marta Liras, Mariam Barawi Moran, Víctor A de la Peña O Shea","doi":"10.1002/smsc.202400623","DOIUrl":null,"url":null,"abstract":"<p><p>This work highlights and offers fundamental insights on the potential of electropolymerized conjugated porous polymers in developing efficient hybrid photoelectrodes for photoelectrochemical applications. A simple and cost-effective electropolymerization strategy to create hybrid organic-inorganic photoelectrodes based on two thiophene-based conjugated porous polymers (CPP-3TB and IEP-19) for enhanced solar energy conversion is used. These polymers, when integrated with TiO<sub>2</sub> to form hybrid photoanodes, exhibit enhanced photopotentials and photocurrents compared to bare TiO<sub>2</sub>. This synergetic behavior is attributed to an increased visible light absorption, reduced charge transfer resistance, and minimized electron-hole recombination. In particular, detailed electrochemical and spectroscopic analyses, including electrochemical impedance spectroscopy and transient absorption spectroscopy, reveal that the hybrid systems' superior charge transport and longer photogenerated charge lifetimes contribute to their increased efficiency in solar energy conversion. Moreover, by comparing the structure and behavior of both hybrid systems, corner stone knowledge for the synthesis of CPPs to guide the construction of the future photoelectrochemical cells for solar energy conversion is offered.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 6","pages":"2400623"},"PeriodicalIF":8.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168630/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work highlights and offers fundamental insights on the potential of electropolymerized conjugated porous polymers in developing efficient hybrid photoelectrodes for photoelectrochemical applications. A simple and cost-effective electropolymerization strategy to create hybrid organic-inorganic photoelectrodes based on two thiophene-based conjugated porous polymers (CPP-3TB and IEP-19) for enhanced solar energy conversion is used. These polymers, when integrated with TiO2 to form hybrid photoanodes, exhibit enhanced photopotentials and photocurrents compared to bare TiO2. This synergetic behavior is attributed to an increased visible light absorption, reduced charge transfer resistance, and minimized electron-hole recombination. In particular, detailed electrochemical and spectroscopic analyses, including electrochemical impedance spectroscopy and transient absorption spectroscopy, reveal that the hybrid systems' superior charge transport and longer photogenerated charge lifetimes contribute to their increased efficiency in solar energy conversion. Moreover, by comparing the structure and behavior of both hybrid systems, corner stone knowledge for the synthesis of CPPs to guide the construction of the future photoelectrochemical cells for solar energy conversion is offered.

基于电聚合共轭多孔聚合物的杂化光电极增强太阳能转换。
这项工作强调并提供了电聚合共轭多孔聚合物在开发用于光电化学应用的高效杂化光电极方面的潜力的基本见解。采用一种简单且具有成本效益的电聚合策略,制备了基于两种噻吩基共轭多孔聚合物(pcp - 3tb和IEP-19)的有机-无机杂化光电极,用于增强太阳能转换。当这些聚合物与TiO2集成形成杂化光阳极时,与裸露的TiO2相比,表现出增强的光电位和光电流。这种协同行为归因于可见光吸收的增加,电荷转移阻力的降低,以及电子-空穴复合的最小化。特别是,详细的电化学和光谱分析,包括电化学阻抗谱和瞬态吸收谱,揭示了混合系统优越的电荷传输和更长的光生电荷寿命有助于提高太阳能转换效率。此外,通过比较两种混合体系的结构和性能,为CPPs的合成提供了基础知识,从而指导未来用于太阳能转换的光电化学电池的构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信