{"title":"Driving the future of cosmetics, fragrances and foods with COSMO-RS.Part 2–From theory to practice","authors":"Théophile Gaudin , Jean-Marie Aubry","doi":"10.1016/j.cocis.2024.101876","DOIUrl":"10.1016/j.cocis.2024.101876","url":null,"abstract":"<div><div>The second part of this two-part review provides a comprehensive overview of the practical applications of COSMO-RS methodology in the formulation of cosmetics, fragrances, and foods. The current literature predominantly focuses on the recovery and characterization of ingredients, with fewer studies addressing end-use formulations. Four major types of applications have been identified and are discussed (i) the extraction of active ingredients and additives from biomass, by far the most documented, (ii) their solubilization in skin-compatible or ingestible solvents, (iii) the selection of fragrant molecules to establish a predefined olfactory profile, and finally, (iv) the physico-chemical characterization of ingredients to maximize their sensory performance and safety. For further familiarization with COSMO-RS, the typical calculation procedures are demonstrated step-by-step for key target properties.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"75 ","pages":"Article 101876"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143104794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biosurfactants and bioamphiphiles, survey, perspectives and applicative potential from a colloid science point of view","authors":"Niki Baccile , Jochen Kleinen","doi":"10.1016/j.cocis.2024.101891","DOIUrl":"10.1016/j.cocis.2024.101891","url":null,"abstract":"<div><div>Biological surfactants are amphiphilic molecules obtained from biobased resources, like plants, sugars and oils, using a variety of physical, chemical, biochemical or biotechnological methods. More specifically, the word <em>biosurfactant</em>, or <em>microbial biosurfactants</em>, is classically used for those molecules, like sophorolipids, rhamnolipids or surfactin, produced by fermentation. Historically developed by microbiologists and originally used as natural emulsifiers, recent trends in fundamental and applied research depict a set of molecules with a rich, and somewhat unexpected, physicochemical behavior making it difficult to introduce them as such in existing formulations. A broad research activity is then developing worldwide both in academia and industry with the goal of better understanding this class of amphiphiles with the ultimate perspective of introducing them to the market in fields as varied as detergency, cosmetics, pest control and medicine.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"75 ","pages":"Article 101891"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143104796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charlotte Catrouillet , Marc F. Benedetti , Alexandre Gelabert , Eric van Hullebusch , Rémi Marsac
{"title":"The underestimated and important role of thiol moieties in predicting the fate of toxic metals in the environment","authors":"Charlotte Catrouillet , Marc F. Benedetti , Alexandre Gelabert , Eric van Hullebusch , Rémi Marsac","doi":"10.1016/j.cocis.2024.101888","DOIUrl":"10.1016/j.cocis.2024.101888","url":null,"abstract":"<div><div>Studying the interactions between metals and thiol moieties in natural systems is challenging, although they are of major importance for some (ultra)trace elements (e.g. Hg, Cu, Pt). A major current bottleneck is the development of accurate preservation and detection methods. Based on our current knowledge, thiol moieties are abundant in reduced organic waters, where thiolation of natural organic matter (NOM) occurs, as well as in metal-enriched environments, where organisms secrete thiol moieties. Depending on their affinity and their redox potential, metals complexed to thiolated NOM can be reduced and even transformed into sulfur nanoparticles over time. Such mechanisms are not properly considered in currently used biogeochemical models, explaining why the fate of metals in the environment is not well predicted.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"75 ","pages":"Article 101888"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143104799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent progress in I-III-VI colloidal quantum dots-integrated solar cells","authors":"Zhonglin Du , Dongling Ma","doi":"10.1016/j.cocis.2024.101890","DOIUrl":"10.1016/j.cocis.2024.101890","url":null,"abstract":"<div><div>Colloidal quantum dots (CQDs) have emerged as an important class of nanocrystal materials for solar cell applications due to their outstanding properties, including tunable band gap, high charge carrier mobility, remarkable light absorption range, solution-processability, scalability, <em>etc</em>. The Lead (Pb)/Cadmium (Cd)-free I-III-VI QDs, designed by the reasonable chemical substitution of Pb and Cd with non-toxic elements, are booming as an attractive alternative for practical applications. This review summarizes the recent progress in designing typical I-III-VI QDs and their application in various emerging solar cell applications. The performance improvement of various solar cells due to the integration of QDs having different roles and modified device structures is summarized. In addition, the fundamentals of the I-III-VI QDs, including their crystalline structure, optical properties, and synthesis mechanisms, are described. Finally, we provide perspectives on the current status, challenges, and future directions of I-III-VI QDs-integrated solar cells.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"75 ","pages":"Article 101890"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143104797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stijn De Smedt , Benedetta Attaianese , Ruth Cardinaels
{"title":"Direct ink writing of particle-based multiphase materials: From rheology to functionality","authors":"Stijn De Smedt , Benedetta Attaianese , Ruth Cardinaels","doi":"10.1016/j.cocis.2024.101889","DOIUrl":"10.1016/j.cocis.2024.101889","url":null,"abstract":"<div><div>Direct ink writing (DIW) allows producing complicated geometries by extruding material from a nozzle. The ink has to meet certain material requirements during and after printing for the object to be successfully produced. Meanwhile, the functionality requirements of the end-use application should be met. This paper attempts to provide the rheological basis and critical view to understand the material requirements for DIW inks and to help in making the bridge between the rheology and printability of particle-based multiphase DIW inks while meeting the functional demands of the end product. Colloidal suspensions and Pickering emulsions are often used as material classes for DIW. Some of the most important and noteworthy applications are described for both material classes. Thereafter, a more novel, particle-based multiphase system for DIW, namely capillary suspensions, is briefly discussed.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"75 ","pages":"Article 101889"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143104792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rodrigo B. Reboucas, Nadia N. Nikolova, Vivek Sharma
{"title":"Modeling drop deformations and rheology of dilute to dense emulsions","authors":"Rodrigo B. Reboucas, Nadia N. Nikolova, Vivek Sharma","doi":"10.1016/j.cocis.2025.101904","DOIUrl":"10.1016/j.cocis.2025.101904","url":null,"abstract":"<div><div>We highlight the current state-of-the-art in modeling emulsion rheology, ranging from dilute to jammed dense systems. We focus on analytical and numerical methods developed for calculating, computing, and tracking drop deformation in response to viscometric flows and deriving constitutive models for flowing emulsions. We identify material properties and dimensionless parameters, collate and catalog the small deformation theories and resulting expressions for viscometric quantities, and take stock of challenges for capturing connections between drop deformation, morphology, and rheology of emulsions. We highlight the substantial progress in providing quantitative descriptions of the rheological response using analytical theories, scaling, and computational fluid dynamics. We illustrate how macroscopic rheological properties emerge from microscopic features including the deformation and dynamics of noninteracting or interacting drops, and molecular aspects that control the interfacial properties.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"77 ","pages":"Article 101904"},"PeriodicalIF":7.9,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143637306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-assembly of magnetic colloids under unsteady fields","authors":"G. Camacho, J.R. Morillas, J. de Vicente","doi":"10.1016/j.cocis.2025.101903","DOIUrl":"10.1016/j.cocis.2025.101903","url":null,"abstract":"<div><div>The use of magnetic fields offers an external, versatile way of controlling self-assembly of colloids. This review provides an exhaustive overview of unsteady fields that can vary in one, two, or three dimensions of space, as a powerful tool to direct the self-assembly of magnetic colloids into structures with tunable properties. Unlike steady fields, unsteady (nonstationary) fields can overcome the limitations of classical dipolar interactions, leading to a much wider range of structures, ranging from dense crystalline aggregates to 3D spanning networks, or dynamic clusters. The ability to precisely control the amplitude, frequency, and field direction allows for fine-tuning the interplay of interparticle forces, resulting in controllable assembly pathways. This review analyzes how different types of unsteady fields influence the morphology and dynamics of the self-assembled structures. Key parameters, such as the Mason number, are discussed to characterize the governing driving forces, and potential applications are highlighted.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"76 ","pages":"Article 101903"},"PeriodicalIF":7.9,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143437115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Linear viscoelasticity of physically aging soft glassy (Thixotropic) materials","authors":"Yogesh M. Joshi","doi":"10.1016/j.cocis.2025.101896","DOIUrl":"10.1016/j.cocis.2025.101896","url":null,"abstract":"<div><div>Soft glassy materials are distinguished by their arrested microstructures and out-of-equilibrium thermodynamic states. These materials exhibit time dependent evolution of viscoelastic properties, driven by structural buildup under quiescent conditions, known as physical aging. As a result, they do not obey the standard linear viscoelastic framework, which is well-established for equilibrium materials. This article explores the application of linear viscoelastic principles to soft glassy materials by employing the effective time theory that readjusts the material clock to address the time dependence associated with the same. We explore how the effective time domain approach validates key linear viscoelastic principles, including the Boltzmann superposition principle, convolution relation, time–temperature superposition, time–stress superposition, and the Fourier transform relationship between relaxation modulus and complex modulus. We also discuss the relationship between soft glassy materials and thixotropy. These insights highlight the critical role of effective time in comprehending the intricate rheological characteristics of soft glassy materials.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"76 ","pages":"Article 101896"},"PeriodicalIF":7.9,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143228698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Nur-E-Alam , Md Saiful Islam , Tarek Abedin , Mohammad Aminul Islam , Boon Kar Yap , Tiong Sieh Kiong , Narottam Das , Md Rezaur Rahman , Mayeen Uddin Khandaker
{"title":"Current scenario and future trends on stability issues of perovskite solar cells: A mini review","authors":"Mohammad Nur-E-Alam , Md Saiful Islam , Tarek Abedin , Mohammad Aminul Islam , Boon Kar Yap , Tiong Sieh Kiong , Narottam Das , Md Rezaur Rahman , Mayeen Uddin Khandaker","doi":"10.1016/j.cocis.2025.101895","DOIUrl":"10.1016/j.cocis.2025.101895","url":null,"abstract":"<div><div>Perovskite solar cells (PSCs) are considered a new paradigm in photovoltaic energy technology due to their extraordinary power conversion capabilities. However, their commercialization is hindered by stability issues. The current understanding of PSC degradation mechanisms focuses on factors such as moisture, oxygen, light, temperature, and electrical bias are comprehensively analyzed in this review article. The essential encapsulation strategies require further refinement for long-standing stability. Material engineering, including compositional tuning and defect passivation, has shown promise in enhancing intrinsic perovskite stability. Interface tuning between the perovskite layer and charge transport materials (hole and electron transport layers) is crucial for suppressing ion migration and charge recombination. Additionally, the advanced characterization techniques offer to dive into the degradation pathways, enabling targeted stability improvements. Despite substantial progress in obtaining higher efficiency in PSCs, it is still challenging to achieve the expected stability in PSCs. The development of novel perovskite materials with enhanced structural stability, improved encapsulation strategies, and an understanding of degradation mechanisms at the molecular level should be the imminent research focus with the development of accelerated testing methodologies and field trials essential for evaluating long-standing performance. PSCs will be a major contributor to renewable energy generation once the stability issues with their structure are erased.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"76 ","pages":"Article 101895"},"PeriodicalIF":7.9,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143160025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polymer – surfactant interactions and compatibility for ionic surfactants combined with hydrophilic polymers: Stability and miscibility vs. segregative or associative phase separation and deposition","authors":"Tobias Halthur , Jonas Carlstedt","doi":"10.1016/j.cocis.2024.101894","DOIUrl":"10.1016/j.cocis.2024.101894","url":null,"abstract":"<div><div>The phase behavior of aqueous mixtures of polymers and surfactants has been widely studied over the past thirty years. Not only for the academic interest in the richness in the structures formed, but also for the potential this combination holds in a number of different applications, ranging from cleaning products and cosmetics to pharmaceuticals and oil recovery. However, when developing these products, it is essential to know when the species are miscible, when the aim might be to build viscosity, or how to trigger associative phase separation, as for deposition of coacervates in care shampoos. The phase behavior is not only determined by the choice of the polymer and surfactant, but also to a large extent affected by additions of co-surfactants and salt, which will be discussed in this review. Additional aspects to be considered for less-studied, more natural and sustainable polymers and surfactants will also be presented.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"76 ","pages":"Article 101894"},"PeriodicalIF":7.9,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143160026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}