Current Opinion in Colloid & Interface Science最新文献

筛选
英文 中文
Will biosurfactants replace conventional surfactants? 生物表面活性剂会取代传统表面活性剂吗?
IF 8.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2023-10-13 DOI: 10.1016/j.cocis.2023.101764
Jochen Kleinen
{"title":"Will biosurfactants replace conventional surfactants?","authors":"Jochen Kleinen","doi":"10.1016/j.cocis.2023.101764","DOIUrl":"https://doi.org/10.1016/j.cocis.2023.101764","url":null,"abstract":"<div><p>New surfactants are not necessarily better than established surfactants; new surfactants need to be better, cheaper or have a lower environmental impact to have an advantage over existing products. Attributes like aquatoxicity, mildness, sourcing from renewable carbon and emissions of greenhouse gases during production and use of surfactants had become more and more important. Biosurfactants (BS) which are not really new to the world but which have been so far only produced at low concentrations by microorganisms or plants have attained attention in academical research and interest of industry in the last 25 years resulting in the commercial availability of Sophorolipids and Rhamnolipids by several companies. BS are dedicated to applications in PersonalCare and HouseHold Care due to their consumer-recognizable mildness; BS can, however, not simply replace established components in formulations due to their different performance profile, which makes comparison to traditional surfactants rather complicated.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"68 ","pages":"Article 101764"},"PeriodicalIF":8.9,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92039986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of dispersed particles on surface tension, wetting, and spreading of nanofluids 分散颗粒对纳米流体表面张力、润湿和扩散的影响
IF 8.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2023-10-06 DOI: 10.1016/j.cocis.2023.101762
Alexandre M. Emelyanenko, Ludmila B. Boinovich
{"title":"Effect of dispersed particles on surface tension, wetting, and spreading of nanofluids","authors":"Alexandre M. Emelyanenko,&nbsp;Ludmila B. Boinovich","doi":"10.1016/j.cocis.2023.101762","DOIUrl":"https://doi.org/10.1016/j.cocis.2023.101762","url":null,"abstract":"<div><p><span>The dispersion of small particles provides an inexpensive and convenient way to significantly improve various functional properties of the base fluid. Nanodispersions can be used to solve various industrial and technical problems, such as increasing the efficiency of heat generating systems, cooling electrical equipment<span>, water desalination, control of thermal regimes of chemical processes and electronic devices, enhancing oil recovery, and so on. This review targets to highlight the recently published results that are of general importance for understanding the processes occurring during wetting and spreading of </span></span>nanofluids over various surfaces, as well as the mechanisms that determine these processes.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"68 ","pages":"Article 101762"},"PeriodicalIF":8.9,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91983546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulmonary surfactant's interaction with nanocarriers: Nanoscale structural and functional effects 肺表面活性剂与纳米载体的相互作用:纳米级结构和功能效应
IF 8.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2023-10-01 DOI: 10.1016/j.cocis.2023.101727
Noemi Gallucci , Irene Russo Krauss , Gerardino D'Errico , Luigi Paduano
{"title":"Pulmonary surfactant's interaction with nanocarriers: Nanoscale structural and functional effects","authors":"Noemi Gallucci ,&nbsp;Irene Russo Krauss ,&nbsp;Gerardino D'Errico ,&nbsp;Luigi Paduano","doi":"10.1016/j.cocis.2023.101727","DOIUrl":"10.1016/j.cocis.2023.101727","url":null,"abstract":"<div><p><span>This review provides an overview of experimental and computational results on the interaction between nanocarriers<span> of different natures and pulmonary surfactant models that have appeared in the literature in the last five years. The purpose is to highlight the changes in the nanoscopic structure and functionality of the pulmonary surfactant layer due to the interaction with nanocarriers and </span></span>nanoparticles, which are inorganic, polymeric, or consist of biomolecules. The information gathered contributes to the development of carriers' nanotechnology, thus allowing specific and controlled drug delivery while being minimally invasive by crossing pulmonary surfactant without altering its structure and function.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"67 ","pages":"Article 101727"},"PeriodicalIF":8.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78996726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The stratum corneum barrier – From molecular scale to macroscopic properties 角质层屏障——从分子尺度到宏观性质
IF 8.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2023-10-01 DOI: 10.1016/j.cocis.2023.101725
Emma Sparr , Sebastian Björklund , Q. Dat Pham , Enamul H. Mojumdar , B. Stenqvist , M. Gunnarsson , D. Topgaard
{"title":"The stratum corneum barrier – From molecular scale to macroscopic properties","authors":"Emma Sparr ,&nbsp;Sebastian Björklund ,&nbsp;Q. Dat Pham ,&nbsp;Enamul H. Mojumdar ,&nbsp;B. Stenqvist ,&nbsp;M. Gunnarsson ,&nbsp;D. Topgaard","doi":"10.1016/j.cocis.2023.101725","DOIUrl":"10.1016/j.cocis.2023.101725","url":null,"abstract":"<div><p>The upper layer of our skin, the stratum corneum (SC), is a versatile material that combines mechanical strength with efficient barrier function. In this paper, we discuss these macroscopic properties of SC in relation to recent findings on molecular responses and structural diversity in SC protein and lipids. We put particular focus on the intermediate (colloidal) length scale and how the different SC substructures are organized with respect to each other, including effects of non-equilibrium conditions in the skin with respect to the gradients in water and other components.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"67 ","pages":"Article 101725"},"PeriodicalIF":8.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S135902942300050X/pdfft?md5=6b5e498891bb4188697d716c88eedff3&pid=1-s2.0-S135902942300050X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88572457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Engineering the microstructure of biopolymer hydrogel particle dispersions to deliver functionality in foods 设计生物聚合物水凝胶颗粒分散体的微观结构,以在食品中提供功能
IF 8.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2023-10-01 DOI: 10.1016/j.cocis.2023.101729
Tim J. Wooster, Juliette S. Behra, Adam Burbidge, Hans Jörg Limbach
{"title":"Engineering the microstructure of biopolymer hydrogel particle dispersions to deliver functionality in foods","authors":"Tim J. Wooster,&nbsp;Juliette S. Behra,&nbsp;Adam Burbidge,&nbsp;Hans Jörg Limbach","doi":"10.1016/j.cocis.2023.101729","DOIUrl":"10.1016/j.cocis.2023.101729","url":null,"abstract":"<div><p>Biopolymer hydrogel particles provide a wide range of advantages to food applications due to their highly hydrophilic nature, the ability to tailor micro-/macro-structure, and their complex rheology as dispersions. In food, dispersions of cross-linked hydrogel particles are increasingly used to create unique appearances or textures, novel aroma experiences, and/or for controlled-release applications. Mastering food biopolymer particle dispersions requires understanding of biopolymer physicochemistry, controlled microstructure creation, particle interactions that govern flow behavior, and the characterization techniques that give insight into the structure-function relationships across the different length scales. In the present review, recent progress in cross-linked food biopolymer hydrogels across these domains is presented with a particular focus on fluid gel dispersions and controlled release. We highlight how emerging technologies/techniques might enable new microstructural understanding or designer biopolymer sequences. Finally, we highlight how these developments help to fully unlock biopolymer hydrogel dispersions for food applications.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"67 ","pages":"Article 101729"},"PeriodicalIF":8.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81924465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular interactions, elastic properties, and nanostructure of Langmuir bacterial-lipid monolayers: Towards solving the mystery in bacterial membrane asymmetry Langmuir细菌-脂质单层的分子相互作用、弹性性质和纳米结构:解决细菌膜不对称之谜
IF 8.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2023-10-01 DOI: 10.1016/j.cocis.2023.101731
Xueying Guo, Wuge H. Briscoe
{"title":"Molecular interactions, elastic properties, and nanostructure of Langmuir bacterial-lipid monolayers: Towards solving the mystery in bacterial membrane asymmetry","authors":"Xueying Guo,&nbsp;Wuge H. Briscoe","doi":"10.1016/j.cocis.2023.101731","DOIUrl":"10.1016/j.cocis.2023.101731","url":null,"abstract":"<div><p>The membrane of Gram-negative bacteria (GNB) is especially robust due to the additional, unique, highly asymmetric outer membrane, with lipopolysaccharides (LPSs) as the main component. This LPS layer serves as a protective barrier against antibiotics, host immune responses, and other environmental stresses. However, constructing model membranes containing LPS that capture the structural asymmetry for fundamental studies of the GNB cell wall remains an open challenge. In this context, we discuss how recent physicochemical studies of Langmuir monolayers incorporating LPS help us better understand the elastic properties and structural integrity of model LPS bacterial membranes. The classic Langmuir–Blodgett trough has been used to reveal different lipid phase behaviors of monolayers containing LPS mutants with different molecular architectures to mimic the outer leaflet of the GNB outer membrane, shedding light on the underpinning molecular interactions. Permeation and penetration of antimicrobial peptides are shown to alter the viscoelastic properties of LPS monolayers. The LPS-containing Langmuir monolayer can also be transferred to a substrate as the outer leaflet of an asymmetric solid-supported bilayer, and we will discuss the limitations and potential optimization of this method. Finally, we highlight how different physicochemical methods can corroborate and contribute to unravelling the structural characteristics of model bacterial membranes.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"67 ","pages":"Article 101731"},"PeriodicalIF":8.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359029423000560/pdfft?md5=d971da95ccef293402e28fd1d314cb7a&pid=1-s2.0-S1359029423000560-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82264602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient effects and the role of wetting in microbubble generation 瞬态效应及润湿在微泡产生中的作用
IF 8.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2023-10-01 DOI: 10.1016/j.cocis.2023.101722
Pratik D. Desai , William B. Zimmerman
{"title":"Transient effects and the role of wetting in microbubble generation","authors":"Pratik D. Desai ,&nbsp;William B. Zimmerman","doi":"10.1016/j.cocis.2023.101722","DOIUrl":"10.1016/j.cocis.2023.101722","url":null,"abstract":"<div><p>Microbubble dispersions are now commonly deployed in industrial applications ranging from bioprocesses to chemical reaction engineering, at full scale. There are five major classes of microbubble generation devices that are scalable. In recent years, some of these approaches have been explicitly studied for the influence of wetting properties on microbubble performance, for which the major proxy is the bubble-size distribution. In this piece, the methodologies for inferring bubble-size distribution are explored, with several recent advances as well as their potential pitfalls. Subsequently, studies where microbubble generation has been under investigation for wetting effects are assessed and in some cases, those that were not allowed the deduction that wetting is a significant factor. Two particular studies are highlighted: (i) systematic variation of wetting effects within a venturi with removable walls substituted with coated walls of known contact angle with hydrodynamic cavitation induced microbubbles and (ii) variation of ionic liquids with staged fluidic oscillation before steady flow. The first study shows that even in scenarios where high inertial effects would be expected to dominate, wetting influences are significant. The second study shows that transient effects are strongly influenced by both imbibition into pores and surface wetting but that viscous resistance is always a key factor. From the exploration of these recent studies, specific recommendations are made about how to assess the influence of wetting in those mechanisms/devices where it has not been explicitly studied, via deduction from those mechanisms/devices where the effects are demonstrably significant and indeed in some cases, controlling. In study (ii), which is the first to blow micro/bubbles into ionic liquids, wetting and transient effects are reasonable for between 25% and 50% reduction in average bubble size, although up to 70% reduction is observable when viscous effects are dominant, relative to the control of steady flow with the same pressure drop. Indeed, staging transient operations shows both bubble-size reduction and increased volumetric throughput are simultaneously possible.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"67 ","pages":"Article 101722"},"PeriodicalIF":8.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S135902942300047X/pdfft?md5=40606af57423dde648fb33c261c361be&pid=1-s2.0-S135902942300047X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86291904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finding the point of no return: Dynamical systems theory applied to the moving contact-line instability 寻找不归路点:动力系统理论在运动接触线不稳定性中的应用
IF 8.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2023-10-01 DOI: 10.1016/j.cocis.2023.101724
J.S. Keeler , J.E. Sprittles
{"title":"Finding the point of no return: Dynamical systems theory applied to the moving contact-line instability","authors":"J.S. Keeler ,&nbsp;J.E. Sprittles","doi":"10.1016/j.cocis.2023.101724","DOIUrl":"10.1016/j.cocis.2023.101724","url":null,"abstract":"<div><p>The wetting and dewetting of solid surfaces is ubiquitous in physical systems across a range of length scales, and it is well known that there are maximum speeds at which these processes are stable. Past this maximum, flow transitions occur, with films deposited on solids (dewetting) and the outer fluid entrained into the advancing one (wetting). These new flow states may be desirable, or not, and significant research effort has focused on understanding when and how they occur. Up until recently, numerical simulations captured these transitions by focussing on steady calculations. This review concentrates on advances made in the computation of the time-dependent problem, utilising dynamical systems theory. Facilitated via a linear stability analysis, unstable solutions act as ‘edge states’, which form the ‘point of no return’ for which perturbations from stable flow cease decaying and, significantly, show the system can become unstable before the maximum speed is achieved.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"67 ","pages":"Article 101724"},"PeriodicalIF":8.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359029423000493/pdfft?md5=887d864fcee72c55961c61d89770ff22&pid=1-s2.0-S1359029423000493-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82947489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorption layer and flow within liquid meniscus in forced dewetting 强制脱湿过程中液体半月板内的吸附层与流动
IF 8.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2023-10-01 DOI: 10.1016/j.cocis.2023.101723
V.I. Kovalchuk , G.K. Auernhammer
{"title":"Adsorption layer and flow within liquid meniscus in forced dewetting","authors":"V.I. Kovalchuk ,&nbsp;G.K. Auernhammer","doi":"10.1016/j.cocis.2023.101723","DOIUrl":"10.1016/j.cocis.2023.101723","url":null,"abstract":"<div><p>In surfactant solutions, the bulk hydrodynamic flow couples to extensional/compressional surface flows due to Marangoni stresses induced at the interface. With the increasing surfactant concentration, these Marangoni stresses can suppress the surface flows and lead to non-moving, retarded, surfaces. We review this phenomenon with special focus on the dynamic dewetting of a substrate pulled out of a pool of surfactant solution. In this case, the dewetting meniscus surface can be retarded (fully or partially) because of the appearance of surface tension gradients opposing the flow in the adjacent liquid. With an increasing flow velocity, the non-uniformity of the meniscus surface becomes stronger resulting in its separation on a mobile and an immobile part with a sharp transition between them. The presence of a non-uniform adsorption layer at the meniscus surface strongly complicates the dewetting dynamics which becomes dependent on the surfactant balance at the surface.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"67 ","pages":"Article 101723"},"PeriodicalIF":8.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359029423000481/pdfft?md5=ef622465443057347362b522677d8240&pid=1-s2.0-S1359029423000481-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91069518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neutron techniques for food hydrocolloids 食品水胶体的中子技术
IF 8.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2023-10-01 DOI: 10.1016/j.cocis.2023.101730
Elliot Paul Gilbert
{"title":"Neutron techniques for food hydrocolloids","authors":"Elliot Paul Gilbert","doi":"10.1016/j.cocis.2023.101730","DOIUrl":"10.1016/j.cocis.2023.101730","url":null,"abstract":"<div><p>Neutron scattering<span> techniques provide detailed information on the structure of and dynamics occurring within materials across multiple length and time scales. When combined with traditional characterisation techniques used in food materials science, they can generate unique insight and understanding that can assist in the development of new and improved ingredients and formulations. This review describes recent examples of the application of neutron scattering techniques across a broad range of food hydrocolloids as well as outlining future opportunities in the field.</span></p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"67 ","pages":"Article 101730"},"PeriodicalIF":8.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73301742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信