{"title":"来自糖脂生物表面活性剂的粘弹性系统","authors":"Ghazi Ben Messaoud","doi":"10.1016/j.cocis.2024.101805","DOIUrl":null,"url":null,"abstract":"<div><p>Biosurfactants offer significant advantages over their chemical counterparts due to their environmentally friendly nature. Among them, glycolipids are one of the most studied classes and possess the ability to self-assemble into various structures. The ability of glycolipid bioamphiphiles to impart viscoelasticity and immobilize the solvent underscores their potential use beyond their surface-active properties, positioning them as efficient low-molecular-weight gelators for the development of functional soft materials. Herein, we review the viscoelastic properties of self-assembled glycolipid systems, namely worm-like micelles, fibrillar, and lamellar hydrogels. Next, recent trends in the development of multicomponent systems from the orthogonal self-assembly of glycolipids and biopolymer gels are highlighted.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"71 ","pages":"Article 101805"},"PeriodicalIF":7.9000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscoelastic systems from glycolipid biosurfactants\",\"authors\":\"Ghazi Ben Messaoud\",\"doi\":\"10.1016/j.cocis.2024.101805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biosurfactants offer significant advantages over their chemical counterparts due to their environmentally friendly nature. Among them, glycolipids are one of the most studied classes and possess the ability to self-assemble into various structures. The ability of glycolipid bioamphiphiles to impart viscoelasticity and immobilize the solvent underscores their potential use beyond their surface-active properties, positioning them as efficient low-molecular-weight gelators for the development of functional soft materials. Herein, we review the viscoelastic properties of self-assembled glycolipid systems, namely worm-like micelles, fibrillar, and lamellar hydrogels. Next, recent trends in the development of multicomponent systems from the orthogonal self-assembly of glycolipids and biopolymer gels are highlighted.</p></div>\",\"PeriodicalId\":293,\"journal\":{\"name\":\"Current Opinion in Colloid & Interface Science\",\"volume\":\"71 \",\"pages\":\"Article 101805\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Colloid & Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359029424000232\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029424000232","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Viscoelastic systems from glycolipid biosurfactants
Biosurfactants offer significant advantages over their chemical counterparts due to their environmentally friendly nature. Among them, glycolipids are one of the most studied classes and possess the ability to self-assemble into various structures. The ability of glycolipid bioamphiphiles to impart viscoelasticity and immobilize the solvent underscores their potential use beyond their surface-active properties, positioning them as efficient low-molecular-weight gelators for the development of functional soft materials. Herein, we review the viscoelastic properties of self-assembled glycolipid systems, namely worm-like micelles, fibrillar, and lamellar hydrogels. Next, recent trends in the development of multicomponent systems from the orthogonal self-assembly of glycolipids and biopolymer gels are highlighted.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.