{"title":"用聚合物颗粒稳定的泡沫/气泡","authors":"Syuji Fujii","doi":"10.1016/j.cocis.2024.101808","DOIUrl":null,"url":null,"abstract":"<div><p>Solid particles have been well known to stabilize foams/bubbles by adsorption at gas–liquid interfaces. Synthetic polymer particles are a particularly attractive stabilizer for the foams/bubbles, because their sizes, shapes, surface/bulk chemistries, hydrophilicity-hydrophobicity balance and softness can be tailored and modified by heterogeneous polymerization techniques, (co)polymerizations of functional monomers, polymer reactions and polymer processing. Additionally, a wide range of stimulus-responsive characteristics and film-forming nature of the polymer particles could inspire the design of functional and well-defined particle-stabilized foams/bubbles and materials based on them. This short review overviews aqueous foams/bubbles stabilized solely with synthetic polymer particles and material chemistry based on them, followed by discussions on research directions for the future.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"72 ","pages":"Article 101808"},"PeriodicalIF":7.9000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Foams/bubbles stabilized with polymer particles\",\"authors\":\"Syuji Fujii\",\"doi\":\"10.1016/j.cocis.2024.101808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solid particles have been well known to stabilize foams/bubbles by adsorption at gas–liquid interfaces. Synthetic polymer particles are a particularly attractive stabilizer for the foams/bubbles, because their sizes, shapes, surface/bulk chemistries, hydrophilicity-hydrophobicity balance and softness can be tailored and modified by heterogeneous polymerization techniques, (co)polymerizations of functional monomers, polymer reactions and polymer processing. Additionally, a wide range of stimulus-responsive characteristics and film-forming nature of the polymer particles could inspire the design of functional and well-defined particle-stabilized foams/bubbles and materials based on them. This short review overviews aqueous foams/bubbles stabilized solely with synthetic polymer particles and material chemistry based on them, followed by discussions on research directions for the future.</p></div>\",\"PeriodicalId\":293,\"journal\":{\"name\":\"Current Opinion in Colloid & Interface Science\",\"volume\":\"72 \",\"pages\":\"Article 101808\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Colloid & Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359029424000268\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029424000268","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Solid particles have been well known to stabilize foams/bubbles by adsorption at gas–liquid interfaces. Synthetic polymer particles are a particularly attractive stabilizer for the foams/bubbles, because their sizes, shapes, surface/bulk chemistries, hydrophilicity-hydrophobicity balance and softness can be tailored and modified by heterogeneous polymerization techniques, (co)polymerizations of functional monomers, polymer reactions and polymer processing. Additionally, a wide range of stimulus-responsive characteristics and film-forming nature of the polymer particles could inspire the design of functional and well-defined particle-stabilized foams/bubbles and materials based on them. This short review overviews aqueous foams/bubbles stabilized solely with synthetic polymer particles and material chemistry based on them, followed by discussions on research directions for the future.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.