泡沫辅助采油:基于物理学的视角

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL
Hernán A. Ritacco
{"title":"泡沫辅助采油:基于物理学的视角","authors":"Hernán A. Ritacco","doi":"10.1016/j.cocis.2024.101809","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, I delve into the physics of foams within the context of Enhanced Oil Recovery (EOR). Foams present a promising prospect for use in EOR, applicable to both conventional and non-conventional oil wells. A primary challenge faced by oil industry technologists is ensuring foam stability in porous media under harsh conditions of temperature, pressure, and salinity. To surmount these challenges, a profound understanding of the physicochemical mechanisms governing foam formation and stability at a microscopic level is required. In this article, I explore some fundamental aspects of foam physics that should be considered when developing foam systems for EOR. I conclude the paper by briefly discussing the use of machine learning in the design of foam-assisted EOR, and by highlighting the potential of smart foams in the oil industry.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Foam-assisted oil recovery: A physics-based perspective\",\"authors\":\"Hernán A. Ritacco\",\"doi\":\"10.1016/j.cocis.2024.101809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, I delve into the physics of foams within the context of Enhanced Oil Recovery (EOR). Foams present a promising prospect for use in EOR, applicable to both conventional and non-conventional oil wells. A primary challenge faced by oil industry technologists is ensuring foam stability in porous media under harsh conditions of temperature, pressure, and salinity. To surmount these challenges, a profound understanding of the physicochemical mechanisms governing foam formation and stability at a microscopic level is required. In this article, I explore some fundamental aspects of foam physics that should be considered when developing foam systems for EOR. I conclude the paper by briefly discussing the use of machine learning in the design of foam-assisted EOR, and by highlighting the potential of smart foams in the oil industry.</p></div>\",\"PeriodicalId\":293,\"journal\":{\"name\":\"Current Opinion in Colloid & Interface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Colloid & Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135902942400027X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135902942400027X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我将从强化石油采收(EOR)的角度深入探讨泡沫物理学。泡沫在 EOR 中的应用前景广阔,既适用于常规油井,也适用于非常规油井。石油工业技术人员面临的一个主要挑战是确保泡沫在温度、压力和盐度等苛刻条件下在多孔介质中的稳定性。要克服这些挑战,就必须深刻理解微观层面上支配泡沫形成和稳定性的物理化学机制。在本文中,我将探讨在开发 EOR 用泡沫系统时应考虑的泡沫物理学的一些基本方面。最后,我简要讨论了机器学习在泡沫辅助 EOR 设计中的应用,并强调了智能泡沫在石油工业中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Foam-assisted oil recovery: A physics-based perspective

Foam-assisted oil recovery: A physics-based perspective

Foam-assisted oil recovery: A physics-based perspective

In this paper, I delve into the physics of foams within the context of Enhanced Oil Recovery (EOR). Foams present a promising prospect for use in EOR, applicable to both conventional and non-conventional oil wells. A primary challenge faced by oil industry technologists is ensuring foam stability in porous media under harsh conditions of temperature, pressure, and salinity. To surmount these challenges, a profound understanding of the physicochemical mechanisms governing foam formation and stability at a microscopic level is required. In this article, I explore some fundamental aspects of foam physics that should be considered when developing foam systems for EOR. I conclude the paper by briefly discussing the use of machine learning in the design of foam-assisted EOR, and by highlighting the potential of smart foams in the oil industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.50
自引率
1.10%
发文量
74
审稿时长
11.3 weeks
期刊介绍: Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications. Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments. Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信