石灰石与补充胶凝材料在三元水泥中的协同作用

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL
Luca Campagiorni, Monica Tonelli, Francesca Ridi
{"title":"石灰石与补充胶凝材料在三元水泥中的协同作用","authors":"Luca Campagiorni,&nbsp;Monica Tonelli,&nbsp;Francesca Ridi","doi":"10.1016/j.cocis.2024.101885","DOIUrl":null,"url":null,"abstract":"<div><div>This review offers an introductory examination of the challenges involved in formulating limestone-based ternary blended cements intended for both specialists and nonexperts in cement chemistry. The environmental impact of cement production and the raising awareness on climate changes has led to a progressive shift toward sustainable practices, emphasizing the critical need for eco-friendly construction materials. Here, the motivation for adopting ternary blends is explored, with a particular focus on supplementary cementitious materials (SCMs) otherwise classified as wastes, such as ground granulated blast-furnace slag, silica fume, fly ash, and metakaolin, which contribute to sustainability improvements. To facilitate understanding, a glossary of technical terms is provided alongside an overview of the cement hydration process and the distinct characteristics of various SCMs.</div><div>The review focuses on the performance of binary and ternary cement blends, giving particular consideration to the synergistic effects observed when limestone is combined with SCMs in ternary formulations. Key properties of specific ternary blends are highlighted, unraveling their potential to enhance both performance and environmental sustainability. Finally, the review provides a perspective for future developments, reflecting on the broader implications of these materials for promoting sustainable construction practices within the industry.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"75 ","pages":"Article 101885"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic effect of limestone and supplementary cementitious materials in ternary blended cements\",\"authors\":\"Luca Campagiorni,&nbsp;Monica Tonelli,&nbsp;Francesca Ridi\",\"doi\":\"10.1016/j.cocis.2024.101885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This review offers an introductory examination of the challenges involved in formulating limestone-based ternary blended cements intended for both specialists and nonexperts in cement chemistry. The environmental impact of cement production and the raising awareness on climate changes has led to a progressive shift toward sustainable practices, emphasizing the critical need for eco-friendly construction materials. Here, the motivation for adopting ternary blends is explored, with a particular focus on supplementary cementitious materials (SCMs) otherwise classified as wastes, such as ground granulated blast-furnace slag, silica fume, fly ash, and metakaolin, which contribute to sustainability improvements. To facilitate understanding, a glossary of technical terms is provided alongside an overview of the cement hydration process and the distinct characteristics of various SCMs.</div><div>The review focuses on the performance of binary and ternary cement blends, giving particular consideration to the synergistic effects observed when limestone is combined with SCMs in ternary formulations. Key properties of specific ternary blends are highlighted, unraveling their potential to enhance both performance and environmental sustainability. Finally, the review provides a perspective for future developments, reflecting on the broader implications of these materials for promoting sustainable construction practices within the industry.</div></div>\",\"PeriodicalId\":293,\"journal\":{\"name\":\"Current Opinion in Colloid & Interface Science\",\"volume\":\"75 \",\"pages\":\"Article 101885\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Colloid & Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359029424001031\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029424001031","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本综述为水泥化学领域的专家和非专家介绍了配制石灰石基三元水泥所面临的挑战。水泥生产对环境的影响以及对气候变化意识的提高导致了向可持续实践的逐步转变,强调了对环保建筑材料的迫切需求。本文探讨了采用三元共混物的动机,特别关注补充胶凝材料(SCMs),否则被归类为废物,如磨碎的粒状高炉炉渣、硅灰、粉煤灰和偏高岭土,它们有助于改善可持续性。为了便于理解,本文提供了一个技术术语表,同时概述了水泥水化过程和各种scm的独特特性。本文重点介绍了二元和三元水泥共混物的性能,特别考虑了石灰石与超临界水泥在三元配方中结合时所观察到的协同效应。重点介绍了特定三元共混物的关键特性,揭示了它们在提高性能和环境可持续性方面的潜力。最后,该综述为未来的发展提供了一个视角,反映了这些材料对促进行业内可持续建筑实践的更广泛影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic effect of limestone and supplementary cementitious materials in ternary blended cements

Synergistic effect of limestone and supplementary cementitious materials in ternary blended cements
This review offers an introductory examination of the challenges involved in formulating limestone-based ternary blended cements intended for both specialists and nonexperts in cement chemistry. The environmental impact of cement production and the raising awareness on climate changes has led to a progressive shift toward sustainable practices, emphasizing the critical need for eco-friendly construction materials. Here, the motivation for adopting ternary blends is explored, with a particular focus on supplementary cementitious materials (SCMs) otherwise classified as wastes, such as ground granulated blast-furnace slag, silica fume, fly ash, and metakaolin, which contribute to sustainability improvements. To facilitate understanding, a glossary of technical terms is provided alongside an overview of the cement hydration process and the distinct characteristics of various SCMs.
The review focuses on the performance of binary and ternary cement blends, giving particular consideration to the synergistic effects observed when limestone is combined with SCMs in ternary formulations. Key properties of specific ternary blends are highlighted, unraveling their potential to enhance both performance and environmental sustainability. Finally, the review provides a perspective for future developments, reflecting on the broader implications of these materials for promoting sustainable construction practices within the industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.50
自引率
1.10%
发文量
74
审稿时长
11.3 weeks
期刊介绍: Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications. Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments. Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信