{"title":"Probing ligand-induced local stability shifts: A sensitive approach to identify target proteins and binding sites at the proteomic scale","authors":"Keyun Wang , Yanan Li , Yanni Ma , Mingliang Ye","doi":"10.1016/j.cbpa.2025.102602","DOIUrl":"10.1016/j.cbpa.2025.102602","url":null,"abstract":"<div><div>Deciphering ligand-induced structural alterations represents a critical frontier in functional proteomics, offering transformative potential for both target identification and mechanistic understanding of ligand actions. Therefore, it is of great interest to develop robust proteomic approaches to uncover the binding relationship between ligands and the targeting proteins. The ligand modification-free approaches have the advantages of bypassing chemical modification and thus are broadly applicable to diverse ligands. Herein, in this review, we will introduce some recent methodology advancements for modification-free approaches in the identification of interactions between ligands and proteins. Especially, we will focus on a newly developed method, peptide-centric local stability assay (PELSA), which was designed to probe the ligand-induced local stability shifts and was demonstrated to have high sensitivity in revealing the binding regions at proteome level. The continued refinement and wider implementation of such technologies are expected to revolutionize fundamental research related with ligand–protein interactions.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"87 ","pages":"Article 102602"},"PeriodicalIF":6.9,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144184648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zih-Jheng Lin, Cheng-Yu Fang, Tsung-Shing Andrew Wang
{"title":"Natural and artificial siderophores: Iron-based applications and beyond","authors":"Zih-Jheng Lin, Cheng-Yu Fang, Tsung-Shing Andrew Wang","doi":"10.1016/j.cbpa.2025.102601","DOIUrl":"10.1016/j.cbpa.2025.102601","url":null,"abstract":"<div><div>Siderophores are iron chelators secreted by microorganisms to scavenge iron from the environment. Natural siderophores have gained remarkable importance because their conjugates can be applied as antibiotics and diagnostic imaging agents. By utilizing the iron uptake system of microorganisms, functional molecules such as antibiotics or imaging agents can be delivered into cells. Notably, artificial siderophores have also been developed to increase stability and broaden metal chelating diversity. Various strategies, including backbone fine-tuning, artificial chelation moieties, and direct metal swapping, can be employed. Therefore, artificial siderophores can bind biorelated metals or radioactive isotopes, expanding their biological and medical applications. The aim of this review is to introduce recent advances in natural and artificial siderophore applications and highlight future challenges in this area of research.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"87 ","pages":"Article 102601"},"PeriodicalIF":6.9,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144114946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent developments in probing the levels and flux of selected organellar cations as well as organellar mechanosensitivity","authors":"Taufiq Rahman , Sandip Patel","doi":"10.1016/j.cbpa.2025.102600","DOIUrl":"10.1016/j.cbpa.2025.102600","url":null,"abstract":"<div><div>Electrochemical gradients exist not only across the plasma membrane (PM) but also across membranes of organelles. Various endomembrane-localised ion channels and transporters have been identified, the activity of which is critical for organellar (and also cellular) ionic homeostasis that underpins diverse cellular processes. Aberrant organellar ion flux underlies several diseases, identifying organellar channels and transporters as potential drug targets. Therefore, the need for probing the functions of these proteins in situ cannot be overemphasised. The acidic interior of a few organelles as well as the dynamic nature of most organelles historically presented challenges for reliable estimation of luminal ionic concentrations. But there have been significant methodological and technical advancements by now, allowing measurement of levels of specific ions within these organelles as well as their flux across endomembranes with increasing precision. Evidence also continues to amass reporting mechanosensitivity of the endomembranes and its physiological significance. Here we highlight some recent developments in tools and techniques for measuring the levels and movement of some selected organellar cations as well as organellar mechanosensitivity.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"87 ","pages":"Article 102600"},"PeriodicalIF":6.9,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143900426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical strategies for targeting lipid pathways in bacterial pathogens","authors":"Alyssa M. Carter , Emily C. Woods , Matthew Bogyo","doi":"10.1016/j.cbpa.2025.102596","DOIUrl":"10.1016/j.cbpa.2025.102596","url":null,"abstract":"<div><div>Microbial pathogens continue to plague human health and develop resistance to our current frontline treatments. Over the last few decades, there has been limited development of antibiotics with new mechanisms of action, highlighting our need to identify processes that can be targeted by next generation therapeutics. Recent advancements in our understanding of the roles that lipids play in key bacterial processes suggest that these biomolecules are a potentially valuable site for disruption by therapeutic agents. Specifically, the success of a pathogen depends on its ability to make fatty acids <em>de novo</em> or scavenge lipids from its host. This review focuses on recent advances using chemical biology tools for defining and disrupting lipid pathways in bacteria.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"86 ","pages":"Article 102596"},"PeriodicalIF":6.9,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143850137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular and biochemical insights from natural and engineered photosynthetic endosymbiotic systems","authors":"Jay E. Cournoyer , Bidhan C. De , Angad P. Mehta","doi":"10.1016/j.cbpa.2025.102598","DOIUrl":"10.1016/j.cbpa.2025.102598","url":null,"abstract":"<div><div>Mitochondria and chloroplasts evolved through the transformation of bacterial endosymbionts established within the host cells. Studies on these organelles have provided several phylogenetic and biochemical insights related to this remarkable evolutionary transformation. Additionally, comparative studies between naturally existing endosymbionts and present-day organelles have allowed us to identify important common features of endosymbiotic evolution. In this review, we discuss hallmarks of photosynthetic endosymbiotic systems, particularly focusing on some of the fascinating molecular changes that occur in the endosymbiont and the host as the endosymbiont/host chimera evolves and transforms endosymbionts into organelles; these include the following: (i) endosymbiont genome minimization and host/endosymbiont gene transfer, (ii) protein import/export systems, (iii) metabolic crosstalk between the endosymbiont, (iv) alterations to the endosymbiont peptidoglycan, and (v) host-controlled replication of endosymbionts/organelles. We discuss these hallmarks in the context of naturally existing photosynthetic endosymbiotic systems and present-day chloroplasts. Further, we also briefly discuss laboratory efforts to engineer endosymbiosis between photosynthetic bacteria and host cells, the lessons learned from these studies, future directions of these studies, and their implications on evolutionary biology and synthetic biology.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"87 ","pages":"Article 102598"},"PeriodicalIF":6.9,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143848300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Opportunities in exploring chemical biology tools for better strategies against Candida albicans","authors":"Lanxin Li, Yuan Qiao","doi":"10.1016/j.cbpa.2025.102595","DOIUrl":"10.1016/j.cbpa.2025.102595","url":null,"abstract":"<div><div>The growing global prevalence of drug-resistant fungal infections and the scarcity of effective clinical antifungal drugs necessitate an urgent need for new treatments and strategies. In the quest for novel antifungal and anti-virulence compounds and alternative drug targets in fungi, we recognize the significant value of chemical biology tools in guiding these endeavors. Focusing on <em>Candida albicans</em>, the major fungal pathogen in humans, this review explores recent antifungal research efforts that utilize chemical biology tools—such as chemical probes and toolkits—that offer valuable biological insights into the cellular processes of <em>C. albicans</em>. In addition, we discuss the wealth of compounds in the host gut microbiota that naturally influence <em>C. albicans</em> invasive growth in the gut habitat, presenting promising yet underexplored opportunities for developing novel antifungal and anti-virulence strategies. Chemical biology tools are uniquely positioned to unlock the potential of gut microbiota-derived molecules and metabolites in combating <em>C. albicans</em> infections.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"86 ","pages":"Article 102595"},"PeriodicalIF":6.9,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143769109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael J. Smanski , Ryan M. Peterson , Sheng-Xiong Huang , Ben Shen
{"title":"Corrigendum to “Bacterial diterpene synthases: New opportunities for mechanistic enzymology and engineered biosynthesis” [Curr Opin Chem Biol, 16 (2012) 132–141","authors":"Michael J. Smanski , Ryan M. Peterson , Sheng-Xiong Huang , Ben Shen","doi":"10.1016/j.cbpa.2025.102594","DOIUrl":"10.1016/j.cbpa.2025.102594","url":null,"abstract":"","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"86 ","pages":"Article 102594"},"PeriodicalIF":6.9,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143698155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances in de novo designed metallopeptides as tailored enzyme mimics","authors":"Salvatore La Gatta, Vincent L. Pecoraro","doi":"10.1016/j.cbpa.2025.102586","DOIUrl":"10.1016/j.cbpa.2025.102586","url":null,"abstract":"<div><div>Advances in <em>de novo</em> design of metallopeptides have paved the way for customized metalloenzyme mimics with impressive catalytic capabilities. Over the last few years, incorporation of transition metals into simplified peptide scaffolds has allowed for catalytic efficiencies similar to or greater than those found in natural metalloenzymes. Artificial <em>de novo</em> peptide scaffolds highlight how precise modifications to metal coordination environments can improve scaffold stability and catalytic efficiency for a wide range of applications towards redox, non redox, synthetic, and energy conversion chemistry. These insights deepen our understanding of enzyme evolution and set a solid foundation for new directions in biocatalysis.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"86 ","pages":"Article 102586"},"PeriodicalIF":6.9,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143673039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}