{"title":"Transferring enzyme features to molecular CO2 reduction catalysts","authors":"Matthias Huber, Corinna R. Hess","doi":"10.1016/j.cbpa.2024.102540","DOIUrl":"10.1016/j.cbpa.2024.102540","url":null,"abstract":"<div><div>Carbon monoxide dehydrogenases and formate dehydrogenases efficiently catalyze the reduction of CO<sub>2</sub>. In both enzymes, CO<sub>2</sub> activation at the metal active site is assisted by proximate amino acids and Fe–S-clusters. Functional features of the enzyme are mimicked in molecular catalysts by redox-active ligands, acidic and charged groups in the ligand periphery, and binuclear scaffolds. These components have all improved the catalytic performance of synthetic systems. Recent studies impart a deeper understanding of the individual contributions of the various functionalities to reactivity and of their combined effects. New catalyst platforms reveal alternate pathways for CO<sub>2</sub> reduction, unique intermediates, and strategies for switching selectivity. Design of a wider array of complexes that combine different functional elements is encouraged to further optimize catalysts for CO<sub>2</sub> reduction, especially for product formation beyond CO. More diverse bimetallic catalysts are needed to better exploit metal–metal interactions for CO<sub>2</sub> conversion.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"83 ","pages":"Article 102540"},"PeriodicalIF":6.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karolis Norvaisa, Aaron Torres-Huerta, Hennie Valkenier
{"title":"Synthetic transporters for oxoanions","authors":"Karolis Norvaisa, Aaron Torres-Huerta, Hennie Valkenier","doi":"10.1016/j.cbpa.2024.102542","DOIUrl":"10.1016/j.cbpa.2024.102542","url":null,"abstract":"<div><div>This brief review highlights recent advances in the transport of oxoanions using synthetic carriers, focusing on both progress and ongoing challenges in the field. The difficulty of transporting these oxoanions increases with their hydration enthalpies, with less hydrated nitrate and perchlorate being relatively easy to transport. Recent progress has focused on the transport of moderately hydrated anions such as bicarbonate and carboxylates, where studies are influenced by the free diffusion of neutral species obtained by (de)protonation equilibria. Despite significant innovations in the design of synthetic carriers, the transport of the highly hydrated oxoanions sulfate and phosphate remains a major challenge. Progress on sulfate transport has stalled, while the first example of phosphate transport was reported only last year.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"83 ","pages":"Article 102542"},"PeriodicalIF":6.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aidan T. Pezacki , Jiaying Gao , Christopher J. Chang
{"title":"Designing small-molecule and macromolecule sensors for imaging redox-active transition metal signaling","authors":"Aidan T. Pezacki , Jiaying Gao , Christopher J. Chang","doi":"10.1016/j.cbpa.2024.102541","DOIUrl":"10.1016/j.cbpa.2024.102541","url":null,"abstract":"<div><div>Transition metals play essential roles in biology, where these nutrients regulate protein activity as active site cofactors or via metalloallostery. In contrast, dysregulation of transition metal homeostasis can lead to unique metal-dependent signaling pathways connected to aging and disease, such as cuproptosis and ferroptosis for copper- and iron-dependent cell death or cuproplasia and ferroplasia for copper- and iron-dependent cell growth and proliferation, respectively. New methods that enable detection of bioavailable transition metal pools with both metal and oxidation state specificity can help decipher their contributions to health and disease. Here we summarize recent advances in designing sensors for imaging transition metals and their applications to uncover new metal biology.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"83 ","pages":"Article 102541"},"PeriodicalIF":6.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microbial metabolite-receptor interactions in the gut microbiome","authors":"Pamela V. Chang","doi":"10.1016/j.cbpa.2024.102539","DOIUrl":"10.1016/j.cbpa.2024.102539","url":null,"abstract":"<div><div>The gut microbiome impacts many physiological processes that greatly influence host health and disease. Metabolites produced by the gut microbiota have emerged as central players in regulating these biological pathways, often through the engagement of specific host receptors. Despite the importance of these microbial metabolites and receptors in human biology, the vast majority of these interactions remain uncharted due to the complex nature of the gut microbiome and the multitude of metabolites that these microbes produce. Here, we highlight recent developments in identifying such host-gut microbiota interactions, including characterization of bioactive metabolites and their mechanisms of action. Understanding these pathways will enable the development of prophylactics and therapeutics for treating many inflammatory diseases that are impacted by the gut microbiota.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"83 ","pages":"Article 102539"},"PeriodicalIF":6.9,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huan Wang , Jian Huang , Jie Zang , Xueqin Jin , Nieng Yan
{"title":"Drug discovery targeting Nav1.8: Structural insights and therapeutic potential","authors":"Huan Wang , Jian Huang , Jie Zang , Xueqin Jin , Nieng Yan","doi":"10.1016/j.cbpa.2024.102538","DOIUrl":"10.1016/j.cbpa.2024.102538","url":null,"abstract":"<div><div>Voltage-gated sodium (Na<sub>v</sub>) channels are crucial in transmitting action potentials in neurons. The tetrodotoxin-resistant subtype Na<sub>v</sub>1.8 is predominantly expressed in the peripheral nervous system, offering a unique opportunity to design selective inhibitors for pain relief. A number of compounds have been reported to specifically block Na<sub>v</sub>1.8. Among these, VX-548 is already in regulatory review for the treatment of moderate-to-severe acute pain and holds the promise to be the first non-opioid pain killer over the past twenty years. Recent structural studies using cryogenic electron microscopy (cryo-EM) and structure-based predictive modeling have provided unprecedented insights into the structural pharmacology of Na<sub>v</sub>1.8. In this review, we summarize the latest developments in Na<sub>v</sub>1.8-selective inhibitors, focusing on the druggable sites and mechanisms that confer subtype specificity. These structural insights highlight the potential for Na<sub>v</sub>1.8 inhibitors to deliver non-addictive pain management, thus illuminating the avenue to next-generation analgesic development.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"83 ","pages":"Article 102538"},"PeriodicalIF":6.9,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aliona Debisschop , Bram Bogaert , Cristina Muntean , Stefaan C. De Smedt , Koen Raemdonck
{"title":"Beyond chloroquine: Cationic amphiphilic drugs as endosomal escape enhancers for nucleic acid therapeutics","authors":"Aliona Debisschop , Bram Bogaert , Cristina Muntean , Stefaan C. De Smedt , Koen Raemdonck","doi":"10.1016/j.cbpa.2024.102531","DOIUrl":"10.1016/j.cbpa.2024.102531","url":null,"abstract":"<div><div>Nucleic acid (NA) therapeutics have the potential to treat or prevent a myriad of diseases but generally require cytosolic delivery to be functional. NA drugs are therefore often encapsulated into delivery systems that mediate effective endocytic uptake by target cells, but unfortunately often display limited endosomal escape efficiency. This review will focus on the potential of repurposing cationic amphiphilic drugs (CADs) to enhance endosomal escape. In general terms, CADs are small molecules with one or more hydrophobic groups and a polar domain containing a basic amine. CADs have been reported to accumulate in acidified intracellular compartments (e.g., endosomes and lysosomes), integrate in cellular membranes and alter endosomal trafficking pathways, ultimately resulting in improved cytosolic release of the endocytosed cargo. As many CADs are widely used drugs, their repurposing offers opportunities for combination therapies with NAs.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"83 ","pages":"Article 102531"},"PeriodicalIF":6.9,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julia C. Reisenbauer , Kathleen M. Sicinski , Frances H. Arnold
{"title":"Catalyzing the future: recent advances in chemical synthesis using enzymes","authors":"Julia C. Reisenbauer , Kathleen M. Sicinski , Frances H. Arnold","doi":"10.1016/j.cbpa.2024.102536","DOIUrl":"10.1016/j.cbpa.2024.102536","url":null,"abstract":"<div><div>Biocatalysis has the potential to address the need for more sustainable organic synthesis routes. Protein engineering can tune enzymes to perform in cascade reactions and for efficient synthesis of enantiomerically enriched compounds, using both natural and new-to-nature reaction pathways. This review highlights recent achievements in biocatalysis, especially the development of novel enzymatic syntheses to access versatile small molecule intermediates and complex biomolecules. Biocatalytic strategies for the degradation of persistent pollutants and approaches for biomass valorization are also discussed. The transition of chemical synthesis to a greener future will be accelerated by implementing enzymes and engineering them for high performance and new activities.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"83 ","pages":"Article 102536"},"PeriodicalIF":6.9,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances in the expanding genetic code","authors":"Michael L. Pigula, Peter G. Schultz","doi":"10.1016/j.cbpa.2024.102537","DOIUrl":"10.1016/j.cbpa.2024.102537","url":null,"abstract":"<div><div>For over a billion years, the central dogma of biology has been limited largely to 20 canonical amino acids with relatively simple functionalities. The ability to rationally add new building blocks to the genetic code has enabled the site-specific incorporation of hundreds of noncanonical amino acids (ncAAs) with novel properties into proteins in living organisms. Recent technological advances have enabled high level mammalian expression of proteins containing ncAAs, the use of unique codons to direct ncAA incorporation, extension of this methodology to a range of eukaryotic organisms, and the ability to encode building blocks beyond α-amino acids. These ncAAs have been used to study and control proteins in their native cellular context and to engineer enzymes and biotherapeutics with improved or novel properties. Herein we discuss recent developments in the field and potential future research directions.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"83 ","pages":"Article 102537"},"PeriodicalIF":6.9,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineering novel adeno-associated viruses (AAVs) for improved delivery in the nervous system","authors":"Ana D. Carneiro , David V. Schaffer","doi":"10.1016/j.cbpa.2024.102532","DOIUrl":"10.1016/j.cbpa.2024.102532","url":null,"abstract":"<div><div>Harnessing adeno-associated virus (AAV) vectors for therapeutic gene delivery has emerged as a progressively promising strategy to treat disorders of both the central nervous system (CNS) and peripheral nervous system (PNS), and there are many ongoing clinical trials. However, unique physiological and molecular characteristics of the CNS and PNS pose obstacles to efficient vector delivery, ranging from the blood-brain barrier to the diverse nature of nervous system disorders. Engineering novel AAV capsids may help overcome these ongoing challenges and maximize therapeutic transgene delivery. This article discusses strategies for innovative AAV capsid development, highlighting recent advances. Notably, advances in next generation sequencing and machine learning have sparked new approaches for capsid investigation and engineering. Furthermore, we outline future directions and additional challenges in AAV-mediated gene therapy in the CNS and PNS.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"83 ","pages":"Article 102532"},"PeriodicalIF":6.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}