Ghazal Kamyabi, Erica L. Debley, Elizabeth M. Nolan
{"title":"Recent advances in metallophore research uncover functions in quorum sensing, antimicrobial activity, and lanthanide acquisition","authors":"Ghazal Kamyabi, Erica L. Debley, Elizabeth M. Nolan","doi":"10.1016/j.cbpa.2025.102604","DOIUrl":"10.1016/j.cbpa.2025.102604","url":null,"abstract":"<div><div>Metallophores are metal-chelating secondary metabolites that bacteria, fungi, and other organisms produce to acquire essential metal nutrients from their environment. This review highlights some recent discoveries in the field: the role of yersiniabactin in quorum sensing, the capacity of aspergillomarasmine A to inhibit bacterial Ni uptake, and the identification of methylolanthanin, a novel metallophore that enables bacterial lanthanide acquisition.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"87 ","pages":"Article 102604"},"PeriodicalIF":6.9,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144322528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ion transport across biological membranes","authors":"Robin S. Bon, Matthew J. Langton","doi":"10.1016/j.cbpa.2025.102606","DOIUrl":"10.1016/j.cbpa.2025.102606","url":null,"abstract":"","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"87 ","pages":"Article 102606"},"PeriodicalIF":6.9,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144307246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Divya Bhargava , Aniqa Chowdhury , Danielle H. Dube
{"title":"Chemical tools to study and modulate glycan-mediated host-bacteria interactions","authors":"Divya Bhargava , Aniqa Chowdhury , Danielle H. Dube","doi":"10.1016/j.cbpa.2025.102603","DOIUrl":"10.1016/j.cbpa.2025.102603","url":null,"abstract":"<div><div>Glycans cover the surfaces of all cells, where they are poised to mediate a two-way discourse between bacteria and host cells. In some instances, glycan-mediated interactions foster a symbiotic state, and in others, they tip the balance toward disease. Chemical biology approaches have begun to reveal the roles of glycans in host-bacteria interactions and provide novel pathways to modulate these interactions. Here, we highlight recent advances in the development and application of chemical biology tools to delineate the roles of glycans in bacterial adhesion, bacterial evasion of the host immune system, host recognition of bacterial cells, and endogenous mechanisms to maintain symbiosis. Further, we present glycan-based strategies to disrupt host-pathogen interactions and to promote the growth of beneficial bacteria.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"87 ","pages":"Article 102603"},"PeriodicalIF":6.9,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144212337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Probing ligand-induced local stability shifts: A sensitive approach to identify target proteins and binding sites at the proteomic scale","authors":"Keyun Wang , Yanan Li , Yanni Ma , Mingliang Ye","doi":"10.1016/j.cbpa.2025.102602","DOIUrl":"10.1016/j.cbpa.2025.102602","url":null,"abstract":"<div><div>Deciphering ligand-induced structural alterations represents a critical frontier in functional proteomics, offering transformative potential for both target identification and mechanistic understanding of ligand actions. Therefore, it is of great interest to develop robust proteomic approaches to uncover the binding relationship between ligands and the targeting proteins. The ligand modification-free approaches have the advantages of bypassing chemical modification and thus are broadly applicable to diverse ligands. Herein, in this review, we will introduce some recent methodology advancements for modification-free approaches in the identification of interactions between ligands and proteins. Especially, we will focus on a newly developed method, peptide-centric local stability assay (PELSA), which was designed to probe the ligand-induced local stability shifts and was demonstrated to have high sensitivity in revealing the binding regions at proteome level. The continued refinement and wider implementation of such technologies are expected to revolutionize fundamental research related with ligand–protein interactions.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"87 ","pages":"Article 102602"},"PeriodicalIF":6.9,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144184648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zih-Jheng Lin, Cheng-Yu Fang, Tsung-Shing Andrew Wang
{"title":"Natural and artificial siderophores: Iron-based applications and beyond","authors":"Zih-Jheng Lin, Cheng-Yu Fang, Tsung-Shing Andrew Wang","doi":"10.1016/j.cbpa.2025.102601","DOIUrl":"10.1016/j.cbpa.2025.102601","url":null,"abstract":"<div><div>Siderophores are iron chelators secreted by microorganisms to scavenge iron from the environment. Natural siderophores have gained remarkable importance because their conjugates can be applied as antibiotics and diagnostic imaging agents. By utilizing the iron uptake system of microorganisms, functional molecules such as antibiotics or imaging agents can be delivered into cells. Notably, artificial siderophores have also been developed to increase stability and broaden metal chelating diversity. Various strategies, including backbone fine-tuning, artificial chelation moieties, and direct metal swapping, can be employed. Therefore, artificial siderophores can bind biorelated metals or radioactive isotopes, expanding their biological and medical applications. The aim of this review is to introduce recent advances in natural and artificial siderophore applications and highlight future challenges in this area of research.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"87 ","pages":"Article 102601"},"PeriodicalIF":6.9,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144114946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent developments in probing the levels and flux of selected organellar cations as well as organellar mechanosensitivity","authors":"Taufiq Rahman , Sandip Patel","doi":"10.1016/j.cbpa.2025.102600","DOIUrl":"10.1016/j.cbpa.2025.102600","url":null,"abstract":"<div><div>Electrochemical gradients exist not only across the plasma membrane (PM) but also across membranes of organelles. Various endomembrane-localised ion channels and transporters have been identified, the activity of which is critical for organellar (and also cellular) ionic homeostasis that underpins diverse cellular processes. Aberrant organellar ion flux underlies several diseases, identifying organellar channels and transporters as potential drug targets. Therefore, the need for probing the functions of these proteins in situ cannot be overemphasised. The acidic interior of a few organelles as well as the dynamic nature of most organelles historically presented challenges for reliable estimation of luminal ionic concentrations. But there have been significant methodological and technical advancements by now, allowing measurement of levels of specific ions within these organelles as well as their flux across endomembranes with increasing precision. Evidence also continues to amass reporting mechanosensitivity of the endomembranes and its physiological significance. Here we highlight some recent developments in tools and techniques for measuring the levels and movement of some selected organellar cations as well as organellar mechanosensitivity.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"87 ","pages":"Article 102600"},"PeriodicalIF":6.9,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143900426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical strategies for targeting lipid pathways in bacterial pathogens","authors":"Alyssa M. Carter , Emily C. Woods , Matthew Bogyo","doi":"10.1016/j.cbpa.2025.102596","DOIUrl":"10.1016/j.cbpa.2025.102596","url":null,"abstract":"<div><div>Microbial pathogens continue to plague human health and develop resistance to our current frontline treatments. Over the last few decades, there has been limited development of antibiotics with new mechanisms of action, highlighting our need to identify processes that can be targeted by next generation therapeutics. Recent advancements in our understanding of the roles that lipids play in key bacterial processes suggest that these biomolecules are a potentially valuable site for disruption by therapeutic agents. Specifically, the success of a pathogen depends on its ability to make fatty acids <em>de novo</em> or scavenge lipids from its host. This review focuses on recent advances using chemical biology tools for defining and disrupting lipid pathways in bacteria.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"86 ","pages":"Article 102596"},"PeriodicalIF":6.9,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143850137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular and biochemical insights from natural and engineered photosynthetic endosymbiotic systems","authors":"Jay E. Cournoyer , Bidhan C. De , Angad P. Mehta","doi":"10.1016/j.cbpa.2025.102598","DOIUrl":"10.1016/j.cbpa.2025.102598","url":null,"abstract":"<div><div>Mitochondria and chloroplasts evolved through the transformation of bacterial endosymbionts established within the host cells. Studies on these organelles have provided several phylogenetic and biochemical insights related to this remarkable evolutionary transformation. Additionally, comparative studies between naturally existing endosymbionts and present-day organelles have allowed us to identify important common features of endosymbiotic evolution. In this review, we discuss hallmarks of photosynthetic endosymbiotic systems, particularly focusing on some of the fascinating molecular changes that occur in the endosymbiont and the host as the endosymbiont/host chimera evolves and transforms endosymbionts into organelles; these include the following: (i) endosymbiont genome minimization and host/endosymbiont gene transfer, (ii) protein import/export systems, (iii) metabolic crosstalk between the endosymbiont, (iv) alterations to the endosymbiont peptidoglycan, and (v) host-controlled replication of endosymbionts/organelles. We discuss these hallmarks in the context of naturally existing photosynthetic endosymbiotic systems and present-day chloroplasts. Further, we also briefly discuss laboratory efforts to engineer endosymbiosis between photosynthetic bacteria and host cells, the lessons learned from these studies, future directions of these studies, and their implications on evolutionary biology and synthetic biology.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"87 ","pages":"Article 102598"},"PeriodicalIF":6.9,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143848300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}