Current Opinion in Chemical Biology最新文献

筛选
英文 中文
Opportunities in exploring chemical biology tools for better strategies against Candida albicans
IF 6.9 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-04-04 DOI: 10.1016/j.cbpa.2025.102595
Lanxin Li, Yuan Qiao
{"title":"Opportunities in exploring chemical biology tools for better strategies against Candida albicans","authors":"Lanxin Li,&nbsp;Yuan Qiao","doi":"10.1016/j.cbpa.2025.102595","DOIUrl":"10.1016/j.cbpa.2025.102595","url":null,"abstract":"<div><div>The growing global prevalence of drug-resistant fungal infections and the scarcity of effective clinical antifungal drugs necessitate an urgent need for new treatments and strategies. In the quest for novel antifungal and anti-virulence compounds and alternative drug targets in fungi, we recognize the significant value of chemical biology tools in guiding these endeavors. Focusing on <em>Candida albicans</em>, the major fungal pathogen in humans, this review explores recent antifungal research efforts that utilize chemical biology tools—such as chemical probes and toolkits—that offer valuable biological insights into the cellular processes of <em>C. albicans</em>. In addition, we discuss the wealth of compounds in the host gut microbiota that naturally influence <em>C. albicans</em> invasive growth in the gut habitat, presenting promising yet underexplored opportunities for developing novel antifungal and anti-virulence strategies. Chemical biology tools are uniquely positioned to unlock the potential of gut microbiota-derived molecules and metabolites in combating <em>C. albicans</em> infections.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"86 ","pages":"Article 102595"},"PeriodicalIF":6.9,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143769109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Bacterial diterpene synthases: New opportunities for mechanistic enzymology and engineered biosynthesis” [Curr Opin Chem Biol, 16 (2012) 132–141
IF 6.9 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-03-26 DOI: 10.1016/j.cbpa.2025.102594
Michael J. Smanski , Ryan M. Peterson , Sheng-Xiong Huang , Ben Shen
{"title":"Corrigendum to “Bacterial diterpene synthases: New opportunities for mechanistic enzymology and engineered biosynthesis” [Curr Opin Chem Biol, 16 (2012) 132–141","authors":"Michael J. Smanski ,&nbsp;Ryan M. Peterson ,&nbsp;Sheng-Xiong Huang ,&nbsp;Ben Shen","doi":"10.1016/j.cbpa.2025.102594","DOIUrl":"10.1016/j.cbpa.2025.102594","url":null,"abstract":"","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"86 ","pages":"Article 102594"},"PeriodicalIF":6.9,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143698155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in de novo designed metallopeptides as tailored enzyme mimics
IF 6.9 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-03-20 DOI: 10.1016/j.cbpa.2025.102586
Salvatore La Gatta, Vincent L. Pecoraro
{"title":"Recent advances in de novo designed metallopeptides as tailored enzyme mimics","authors":"Salvatore La Gatta,&nbsp;Vincent L. Pecoraro","doi":"10.1016/j.cbpa.2025.102586","DOIUrl":"10.1016/j.cbpa.2025.102586","url":null,"abstract":"<div><div>Advances in <em>de novo</em> design of metallopeptides have paved the way for customized metalloenzyme mimics with impressive catalytic capabilities. Over the last few years, incorporation of transition metals into simplified peptide scaffolds has allowed for catalytic efficiencies similar to or greater than those found in natural metalloenzymes. Artificial <em>de novo</em> peptide scaffolds highlight how precise modifications to metal coordination environments can improve scaffold stability and catalytic efficiency for a wide range of applications towards redox, non redox, synthetic, and energy conversion chemistry. These insights deepen our understanding of enzyme evolution and set a solid foundation for new directions in biocatalysis.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"86 ","pages":"Article 102586"},"PeriodicalIF":6.9,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143673039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redirecting the host immune response to bacterial infection with antibody-recruiting molecules (ARMs)
IF 6.9 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-03-20 DOI: 10.1016/j.cbpa.2025.102585
Priscilla Dzigba , Megan A. Seth , Mallary C. Greenlee-Wacker , Benjamin M. Swarts
{"title":"Redirecting the host immune response to bacterial infection with antibody-recruiting molecules (ARMs)","authors":"Priscilla Dzigba ,&nbsp;Megan A. Seth ,&nbsp;Mallary C. Greenlee-Wacker ,&nbsp;Benjamin M. Swarts","doi":"10.1016/j.cbpa.2025.102585","DOIUrl":"10.1016/j.cbpa.2025.102585","url":null,"abstract":"<div><div>The increasing prevalence of antibiotic resistance, the stagnation of antibiotic development, and the adaptive capacity of bacteria to subvert the host immune response combine to pose significant global health concerns. Consequently, there is an urgent need to develop alternative therapeutic approaches to combat bacterial infections. Antibody-recruiting molecules (ARMs), which are bispecific small molecules that recruit endogenous antibodies to pathogenic cells or viruses, offer a promising avenue to harness the host immune system to target various diseases. In this review, we cover ARM strategies that have been developed for bacterial pathogens, including Gram-positive bacteria, Gram-negative bacteria, and mycobacteria, and we discuss the prospects and challenges of utilizing ARMs as alternatives to traditional antibiotic therapies.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"86 ","pages":"Article 102585"},"PeriodicalIF":6.9,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143673084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noncytotoxic catalytic enzyme functional mimics including cyanide poisoning antidotes
IF 6.9 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-03-12 DOI: 10.1016/j.cbpa.2025.102584
Sigridur G. Suman
{"title":"Noncytotoxic catalytic enzyme functional mimics including cyanide poisoning antidotes","authors":"Sigridur G. Suman","doi":"10.1016/j.cbpa.2025.102584","DOIUrl":"10.1016/j.cbpa.2025.102584","url":null,"abstract":"<div><div>Functional mimics of enzymes have a long history with bioinorganic chemists. Early motivation for creating these mimics was strongly based on the study of the enzyme reaction mechanisms. In more recent times, interest in functional mimics has expanded to catalytic metallodrugs, where the mimics are deliberately designed for specific catalytic reactions intended for therapeutic purposes. <em>In vivo,</em> noncytotoxic catalysis targets reactions designed to activate prodrugs. Natural or <em>de novo</em> proteins were developed for artificial enzyme catalysis of Diels–Alder reactions, or as artificial oxygenase mimics. Novel sulfur-rich catalytic superoxide dismutase (SOD) mimics were discovered as antioxidants. Detoxification of elevated levels of cyanide where the natural rhodanese enzyme becomes inefficient in turnover rates and bioavailability is particularly attractive for sulfur-rich molybdenum clusters. This brief overview includes metal catalysts performing abiotic reactions <em>in vivo</em> disguised by attachment to cell surfaces, as artificial enzymes, and interesting new sulfur-rich complexes performing SOD reactions or neutralizing cyanide.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"86 ","pages":"Article 102584"},"PeriodicalIF":6.9,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143609929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stimuli-responsive synthetic ionophores for therapeutic applications
IF 6.9 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-03-03 DOI: 10.1016/j.cbpa.2025.102582
Sandip Chattopadhayay, Pinaki Talukdar
{"title":"Stimuli-responsive synthetic ionophores for therapeutic applications","authors":"Sandip Chattopadhayay,&nbsp;Pinaki Talukdar","doi":"10.1016/j.cbpa.2025.102582","DOIUrl":"10.1016/j.cbpa.2025.102582","url":null,"abstract":"<div><div>Nature endowed different structurally and functionally complex transmembrane transporters to flux the ions to maintain the healthy functions of the cells by turning on or turning off the ion flow in the presence of external stimuli. Mimicking this stimuli-responsive behavior of natural transporters using synthetic analogs is currently an ongoing interest in the scientific community. This short review highlights the recent development of synthetic responsive ionophore systems. This includes pH, light, redox, enzyme, and multi-stimuli-controlled ionophores systems that have the potential to be utilized in different biomedical applications ranging from antibacterial activity to anticancer activity.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"85 ","pages":"Article 102582"},"PeriodicalIF":6.9,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143534456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Enabling structural biological electron paramagnetic resonance spectroscopy in membrane proteins through spin labelling” Curr Opin Chem Biol 84 (2025) 102564
IF 6.9 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-02-26 DOI: 10.1016/j.cbpa.2025.102583
Anokhi Shah , Joshua L. Wort , Yue Ma , Christos Pliotas
{"title":"Corrigendum to “Enabling structural biological electron paramagnetic resonance spectroscopy in membrane proteins through spin labelling” Curr Opin Chem Biol 84 (2025) 102564","authors":"Anokhi Shah ,&nbsp;Joshua L. Wort ,&nbsp;Yue Ma ,&nbsp;Christos Pliotas","doi":"10.1016/j.cbpa.2025.102583","DOIUrl":"10.1016/j.cbpa.2025.102583","url":null,"abstract":"","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"85 ","pages":"Article 102583"},"PeriodicalIF":6.9,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143487537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid probes to study ion channels
IF 6.9 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-02-19 DOI: 10.1016/j.cbpa.2025.102581
Helene Jahn , Show-Ling Shyng , Carsten Schultz
{"title":"Lipid probes to study ion channels","authors":"Helene Jahn ,&nbsp;Show-Ling Shyng ,&nbsp;Carsten Schultz","doi":"10.1016/j.cbpa.2025.102581","DOIUrl":"10.1016/j.cbpa.2025.102581","url":null,"abstract":"<div><div>Lipids can have specific interaction partners and act as small molecule regulators of proteins, especially for transmembrane proteins. Transmembrane proteins, such as ion channels, can be influenced by lipids in four ways; lipids can be direct ligands, localize effector proteins or domains, affect protein–protein interaction, or change the biophysical properties of the surrounding membrane. In this article, we will give examples of how lipids directly interact with ion channels and address the complex aspect of indirect regulation via lipids of the surrounding membrane bilayer. In addition, we discuss current and propose future molecular tools and experiments elucidating the many roles lipids play in ion channel function.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"85 ","pages":"Article 102581"},"PeriodicalIF":6.9,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143445707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Illuminating antifungal mode of action and resistance with fluorescent probes
IF 6.9 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-02-17 DOI: 10.1016/j.cbpa.2025.102570
Moriah Jospe-Kaufman, Micha Fridman
{"title":"Illuminating antifungal mode of action and resistance with fluorescent probes","authors":"Moriah Jospe-Kaufman,&nbsp;Micha Fridman","doi":"10.1016/j.cbpa.2025.102570","DOIUrl":"10.1016/j.cbpa.2025.102570","url":null,"abstract":"<div><div>The rise in fungal infections, driven by pathogens resistant to the limited scope of antifungal agents available, poses an increasing threat to global health and the economy. Addressing this challenge requires a thorough understanding of the mechanisms of antifungal agents and the development of advanced resistance diagnostic methods. This opinion manuscript highlights recent advancements in antifungal research, with a focus on chemical biology approaches, particularly the development of fluorescent probes derived from various antifungal agents. These probes reveal new aspects of antifungal activity and provide deeper insights into modes of action and resistance mechanisms. Live cell imaging of fungal pathogens labeled with these probes has uncovered novel strategies to enhance antifungal efficacy, understand virulence factors, and detect resistance. These unique small-molecule tools offer powerful new avenues for addressing the fungal infections crisis, harnessing chemical biology approaches to develop innovative solutions to the global challenges posed by fungi.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"85 ","pages":"Article 102570"},"PeriodicalIF":6.9,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143427599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in high-throughput screening methods for small molecule modulators in bacteria
IF 6.9 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-02-14 DOI: 10.1016/j.cbpa.2025.102571
Hannah G. Addis , Erin E. Carlson
{"title":"Recent advances in high-throughput screening methods for small molecule modulators in bacteria","authors":"Hannah G. Addis ,&nbsp;Erin E. Carlson","doi":"10.1016/j.cbpa.2025.102571","DOIUrl":"10.1016/j.cbpa.2025.102571","url":null,"abstract":"<div><div>Bacterial infections, especially those that are resistant to antibiotics, constitute an increasing threat to public health. Deeper understanding about the systems that govern resistant infections, followed by the design of new therapies is crucial to minimizing morbidity and mortality due to antibacterial resistance. To this end, the discovery of small molecules capable of modulating bacterial processes is an important goal. Herein, we summarize recent developments in high-throughput screening, including the use of <em>in vitro</em> biochemical assays, reporter fusion read-out methods, and live cell phenotypic assays in bacteria. We also highlight key advantages and disadvantages of each assay type, as well as exciting new innovations.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"85 ","pages":"Article 102571"},"PeriodicalIF":6.9,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143420340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信