Current Opinion in Chemical Biology最新文献

筛选
英文 中文
Emerging trends in chemoproteomics: Mapping the landscape of protein–metabolite interactions 化学蛋白质组学的新趋势:绘制蛋白质-代谢物相互作用的景观
IF 6.1 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-09-25 DOI: 10.1016/j.cbpa.2025.102631
Ning Wan , Chenguang Liu , Haiping Hao , Hui Ye
{"title":"Emerging trends in chemoproteomics: Mapping the landscape of protein–metabolite interactions","authors":"Ning Wan ,&nbsp;Chenguang Liu ,&nbsp;Haiping Hao ,&nbsp;Hui Ye","doi":"10.1016/j.cbpa.2025.102631","DOIUrl":"10.1016/j.cbpa.2025.102631","url":null,"abstract":"<div><div>Protein-metabolite interactions (PMIs) are fundamental regulators of cellular metabolism, influencing essential processes such as energy homeostasis, signal transduction, and gene expression. However, their transient and dynamic nature presents significant challenges for detection. Chemoproteomics has emerged as a powerful and versatile strategy for capturing and characterizing PMIs with proteome-wide resolution. These approaches can be broadly categorized into derivatization-based methods, which utilize chemically modified probes to enrich protein targets, and derivatization-free methods, which detect changes in protein physicochemical properties upon metabolite binding, aided by highly sensitive proteomic analysis. In this review, we discuss recent advancements in both strategies, highlighting their applications in mapping PMIs and their potential to deepen our understanding of cellular metabolism and disease mechanisms.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"89 ","pages":"Article 102631"},"PeriodicalIF":6.1,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145134890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo cross-linking mass spectrometry: Advances and challenges in decoding protein conformational dynamics and complex regulatory networks in living cells 体内交联质谱:解码活细胞中蛋白质构象动力学和复杂调节网络的进展和挑战
IF 6.1 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-09-12 DOI: 10.1016/j.cbpa.2025.102630
Jing Chen , Qun Zhao , Yukui Zhang , Lihua Zhang
{"title":"In vivo cross-linking mass spectrometry: Advances and challenges in decoding protein conformational dynamics and complex regulatory networks in living cells","authors":"Jing Chen ,&nbsp;Qun Zhao ,&nbsp;Yukui Zhang ,&nbsp;Lihua Zhang","doi":"10.1016/j.cbpa.2025.102630","DOIUrl":"10.1016/j.cbpa.2025.102630","url":null,"abstract":"<div><div><em>In vivo</em> chemical cross-linking mass spectrometry (XL-MS) has emerged as a powerful technique for high-throughput, proteome-wide mapping of intramolecular conformations and intermolecular interactions of protein complexes in living cells. By providing distance constraints between specific residues, XL-MS enables the characterization of protein conformations and interaction networks under near-physiological conditions, greatly facilitating the analysis of biomacromolecular functions and regulatory mechanisms. The information obtained from cross-linking is particularly valuable at the systems level, and its value continues to increase with improvements in the density of cross-link identification, the precision of distance constraints, and the spatiotemporal resolution. In recent years, advances in cross-linker design, cross-linked peptide enrichment methods, mass spectrometry analysis, and artificial intelligence-assisted data analysis have significantly expanded the capabilities of <em>in vivo</em> XL-MS. This article systematically reviews the latest progress in <em>in vivo</em> XL-MS for protein conformation and interaction network analysis, highlights its unique advantages, discusses current technical challenges, and explores further development.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"88 ","pages":"Article 102630"},"PeriodicalIF":6.1,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145044512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolving advances of proximity labeling in capturing biomolecular interactions 接近标记在捕获生物分子相互作用中的发展进展
IF 6.1 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-09-11 DOI: 10.1016/j.cbpa.2025.102629
Ting Dang , Wenqing Shui
{"title":"Evolving advances of proximity labeling in capturing biomolecular interactions","authors":"Ting Dang ,&nbsp;Wenqing Shui","doi":"10.1016/j.cbpa.2025.102629","DOIUrl":"10.1016/j.cbpa.2025.102629","url":null,"abstract":"<div><div>Proximity labeling (PL), with its capability to resolve spatiotemporal dynamics of biomolecular interactions, has become a pivotal technology for interrogating protein–protein interaction networks, subcellular proteomics, and intercellular communication. This review focuses on the breakthrough developments in PL from 2023 to 2025, highlighting three major frontiers: (1) catalytic system innovation, including the development of new enzymes, cascade reactions, and environment-responsive labeling systems, which collectively lead to increased spatiotemporal resolution and enhanced <em>in vivo</em> applicability; (2) new strategies to address endogenous targets, facilitating interactome mapping in native tissues and live animals; and (3) determination of the labeling radius for different PL tools using super-resolution imaging or DNA nanostructures. We also briefly discuss the desired innovation in the next-generation PL research.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"88 ","pages":"Article 102629"},"PeriodicalIF":6.1,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145044511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mass spectrometry-based characterization of histone post-translational modification 基于质谱的组蛋白翻译后修饰表征
IF 6.9 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-07-24 DOI: 10.1016/j.cbpa.2025.102622
Wensi Zhao , Jun Zhang , Kaifeng Chen , Jian Yuan , Linhui Zhai , Minjia Tan
{"title":"Mass spectrometry-based characterization of histone post-translational modification","authors":"Wensi Zhao ,&nbsp;Jun Zhang ,&nbsp;Kaifeng Chen ,&nbsp;Jian Yuan ,&nbsp;Linhui Zhai ,&nbsp;Minjia Tan","doi":"10.1016/j.cbpa.2025.102622","DOIUrl":"10.1016/j.cbpa.2025.102622","url":null,"abstract":"<div><div>Histone post-translational modifications (PTMs) play critical roles in regulating chromatin dynamics and gene expression. Increasing evidence demonstrates that the dysregulation of histone PTMs is closely associated with the pathogenesis of various diseases. Traditional methods for detecting histone PTMs, such as western blot (WB) and chromatin immunoprecipitation sequencing (ChIP-seq), are often limited by their dependence on specific antibodies and relatively low analytical throughput. Mass spectrometry (MS)-based proteomics offers a powerful and unbiased approach for comprehensive characterization of histone PTMs. This review focuses on the advanced development of MS-based strategies for characterizing histone PTMs. These strategies include histone extraction, enzymatic digestion, labeling, enrichment, and MS-based detection. These techniques not only enable comprehensive identification and quantitative analysis of classical modifications, such as acetylation and methylation, but also substantially facilitate the discovery of less-characterized histone PTMs, including succinylation, lactylation, crotonylation, and monoaminylation. Consequently, these findings significantly enhance the complexity of histone code. Collectively, MS-based approaches have profoundly advanced our understanding of histone PTM landscapes and their potential epigenetic regulatory mechanisms in both physiology and pathology contexts.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"88 ","pages":"Article 102622"},"PeriodicalIF":6.9,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144697031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Creating and understanding new-to-nature chemistry 创造和理解新的自然化学
IF 6.9 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-07-17 DOI: 10.1016/j.cbpa.2025.102621
Sonja Billerbeck, Virginia W. Cornish
{"title":"Creating and understanding new-to-nature chemistry","authors":"Sonja Billerbeck,&nbsp;Virginia W. Cornish","doi":"10.1016/j.cbpa.2025.102621","DOIUrl":"10.1016/j.cbpa.2025.102621","url":null,"abstract":"","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"87 ","pages":"Article 102621"},"PeriodicalIF":6.9,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144656264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in proximity labeling for chemical proteomics: Paving the way for in vivo applications 化学蛋白质组学近距离标记的最新进展:为体内应用铺平道路
IF 6.9 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-07-04 DOI: 10.1016/j.cbpa.2025.102620
Fátima Yuri Tanimura Valor, Tomonori Tamura, Itaru Hamachi
{"title":"Recent advances in proximity labeling for chemical proteomics: Paving the way for in vivo applications","authors":"Fátima Yuri Tanimura Valor,&nbsp;Tomonori Tamura,&nbsp;Itaru Hamachi","doi":"10.1016/j.cbpa.2025.102620","DOIUrl":"10.1016/j.cbpa.2025.102620","url":null,"abstract":"<div><div>The integration of proximity labeling (PL) and advanced mass spectrometry-based proteomics is a robust framework for mapping protein–protein interaction (PPI) networks and local protein inventories in the crowded multimolecular environment of live cells. Over the last decade, numerous PL technologies such as biotin identification (BioID), ascorbate peroxidase (APEX) etc. using engineered enzymes or synthetic photocatalysts have been developed and successfully used in cell-based experiments. However, the application of such technologies beyond cultured cells, (i.e. in more complicated tissues or <em>in vivo</em>) remains challenging. In this review, we summarize the current issues in applying PL methods <em>in vivo</em> and highlight recent studies that could provide breakthroughs to overcome the existing limitations and expand the application of PL to tissues and <em>in vivo</em>.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"87 ","pages":"Article 102620"},"PeriodicalIF":6.9,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144548597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial overview: Glycobiology (2024) 编辑概述:糖生物学(2024)
IF 6.9 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-06-28 DOI: 10.1016/j.cbpa.2025.102619
Mia L. Huang, Peng Wu
{"title":"Editorial overview: Glycobiology (2024)","authors":"Mia L. Huang,&nbsp;Peng Wu","doi":"10.1016/j.cbpa.2025.102619","DOIUrl":"10.1016/j.cbpa.2025.102619","url":null,"abstract":"","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"87 ","pages":"Article 102619"},"PeriodicalIF":6.9,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144502448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial overview: Editorial of molecular imaging 编辑概述:分子成像编辑
IF 6.9 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-06-27 DOI: 10.1016/j.cbpa.2025.102618
Jefferson Chan, Martin J. Schnermann
{"title":"Editorial overview: Editorial of molecular imaging","authors":"Jefferson Chan,&nbsp;Martin J. Schnermann","doi":"10.1016/j.cbpa.2025.102618","DOIUrl":"10.1016/j.cbpa.2025.102618","url":null,"abstract":"","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"87 ","pages":"Article 102618"},"PeriodicalIF":6.9,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144502449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The multifaceted repertoire of cellular reactive metabolites 细胞反应性代谢物的多面曲目
IF 6.9 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-06-27 DOI: 10.1016/j.cbpa.2025.102607
Yimon Aye, Christine Winterbourn
{"title":"The multifaceted repertoire of cellular reactive metabolites","authors":"Yimon Aye,&nbsp;Christine Winterbourn","doi":"10.1016/j.cbpa.2025.102607","DOIUrl":"10.1016/j.cbpa.2025.102607","url":null,"abstract":"","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"87 ","pages":"Article 102607"},"PeriodicalIF":6.9,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144490209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical synthesis and biological functions of carbohydrates 碳水化合物的化学合成及生物功能
IF 6.9 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2025-06-27 DOI: 10.1016/j.cbpa.2025.102617
You Yang, Biao Yu
{"title":"Chemical synthesis and biological functions of carbohydrates","authors":"You Yang,&nbsp;Biao Yu","doi":"10.1016/j.cbpa.2025.102617","DOIUrl":"10.1016/j.cbpa.2025.102617","url":null,"abstract":"","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"87 ","pages":"Article 102617"},"PeriodicalIF":6.9,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144490210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信