化学蛋白质组学在蛋白质分析和靶向降解方面的最新进展

IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Peng-Kai Liu , Zicong Wang , Lingjun Li
{"title":"化学蛋白质组学在蛋白质分析和靶向降解方面的最新进展","authors":"Peng-Kai Liu ,&nbsp;Zicong Wang ,&nbsp;Lingjun Li","doi":"10.1016/j.cbpa.2025.102605","DOIUrl":null,"url":null,"abstract":"<div><div>Chemical proteomics has emerged as a powerful approach to decipher protein function, interactions, and targeted degradation pathways in complex biological systems. Recent advances in chemical labeling strategies, including activity-based protein profiling (ABPP), proximity labeling (PL), and proteolysis-targeting chimeras (PROTACs), have facilitated a deeper understanding of protein function and interaction networks. First, ABPP employs covalent probes to selectively label active enzymes, uncovering functional proteomics and drug–target interactions. Innovations such as PhosID-ABPP and streamlined cysteine ABPP have improved site-specific quantification and throughput, enabling proteome-wide analysis of enzyme activity and small-molecule interactions. Second, PL enables the characterization of transient protein–protein interactions using enzymatic or chemically triggered approaches. Advances including TurboID and TransitID enhanced the spatiotemporal resolution of PL. Third, PROTACs expand the scope of targeted protein degradation by leveraging the ubiquitin–proteasome system. Collectively, we highlight recent advancements in integrating mass spectrometry (MS) with these methodologies in the field of chemical proteomics.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"87 ","pages":"Article 102605"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in chemical proteomics for protein profiling and targeted degradation\",\"authors\":\"Peng-Kai Liu ,&nbsp;Zicong Wang ,&nbsp;Lingjun Li\",\"doi\":\"10.1016/j.cbpa.2025.102605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chemical proteomics has emerged as a powerful approach to decipher protein function, interactions, and targeted degradation pathways in complex biological systems. Recent advances in chemical labeling strategies, including activity-based protein profiling (ABPP), proximity labeling (PL), and proteolysis-targeting chimeras (PROTACs), have facilitated a deeper understanding of protein function and interaction networks. First, ABPP employs covalent probes to selectively label active enzymes, uncovering functional proteomics and drug–target interactions. Innovations such as PhosID-ABPP and streamlined cysteine ABPP have improved site-specific quantification and throughput, enabling proteome-wide analysis of enzyme activity and small-molecule interactions. Second, PL enables the characterization of transient protein–protein interactions using enzymatic or chemically triggered approaches. Advances including TurboID and TransitID enhanced the spatiotemporal resolution of PL. Third, PROTACs expand the scope of targeted protein degradation by leveraging the ubiquitin–proteasome system. Collectively, we highlight recent advancements in integrating mass spectrometry (MS) with these methodologies in the field of chemical proteomics.</div></div>\",\"PeriodicalId\":291,\"journal\":{\"name\":\"Current Opinion in Chemical Biology\",\"volume\":\"87 \",\"pages\":\"Article 102605\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367593125000377\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593125000377","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

化学蛋白质组学已经成为一种破译复杂生物系统中蛋白质功能、相互作用和靶向降解途径的有力方法。化学标记策略的最新进展,包括基于活性的蛋白质分析(ABPP)、接近标记(PL)和蛋白水解靶向嵌合体(PROTACs),促进了对蛋白质功能和相互作用网络的深入了解。首先,ABPP采用共价探针选择性标记活性酶,揭示功能蛋白质组学和药物-靶标相互作用。PhosID-ABPP和流线型半胱氨酸ABPP等创新技术提高了位点特异性定量和通量,使酶活性和小分子相互作用的蛋白质组范围分析成为可能。其次,PL能够利用酶或化学触发的方法表征瞬时蛋白质-蛋白质相互作用。TurboID和TransitID等进展增强了PL的时空分辨率。第三,PROTACs利用泛素-蛋白酶体系统扩大了靶向蛋白降解的范围。总的来说,我们强调了在化学蛋白质组学领域将质谱(MS)与这些方法相结合的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recent advances in chemical proteomics for protein profiling and targeted degradation

Recent advances in chemical proteomics for protein profiling and targeted degradation
Chemical proteomics has emerged as a powerful approach to decipher protein function, interactions, and targeted degradation pathways in complex biological systems. Recent advances in chemical labeling strategies, including activity-based protein profiling (ABPP), proximity labeling (PL), and proteolysis-targeting chimeras (PROTACs), have facilitated a deeper understanding of protein function and interaction networks. First, ABPP employs covalent probes to selectively label active enzymes, uncovering functional proteomics and drug–target interactions. Innovations such as PhosID-ABPP and streamlined cysteine ABPP have improved site-specific quantification and throughput, enabling proteome-wide analysis of enzyme activity and small-molecule interactions. Second, PL enables the characterization of transient protein–protein interactions using enzymatic or chemically triggered approaches. Advances including TurboID and TransitID enhanced the spatiotemporal resolution of PL. Third, PROTACs expand the scope of targeted protein degradation by leveraging the ubiquitin–proteasome system. Collectively, we highlight recent advancements in integrating mass spectrometry (MS) with these methodologies in the field of chemical proteomics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Chemical Biology
Current Opinion in Chemical Biology 生物-生化与分子生物学
CiteScore
13.30
自引率
1.30%
发文量
113
审稿时长
74 days
期刊介绍: COCHBI (Current Opinion in Chemical Biology) is a systematic review journal designed to offer specialists a unique and educational platform. Its goal is to help professionals stay informed about the growing volume of information in the field of Chemical Biology through systematic reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信