{"title":"化学蛋白质组学在蛋白质分析和靶向降解方面的最新进展","authors":"Peng-Kai Liu , Zicong Wang , Lingjun Li","doi":"10.1016/j.cbpa.2025.102605","DOIUrl":null,"url":null,"abstract":"<div><div>Chemical proteomics has emerged as a powerful approach to decipher protein function, interactions, and targeted degradation pathways in complex biological systems. Recent advances in chemical labeling strategies, including activity-based protein profiling (ABPP), proximity labeling (PL), and proteolysis-targeting chimeras (PROTACs), have facilitated a deeper understanding of protein function and interaction networks. First, ABPP employs covalent probes to selectively label active enzymes, uncovering functional proteomics and drug–target interactions. Innovations such as PhosID-ABPP and streamlined cysteine ABPP have improved site-specific quantification and throughput, enabling proteome-wide analysis of enzyme activity and small-molecule interactions. Second, PL enables the characterization of transient protein–protein interactions using enzymatic or chemically triggered approaches. Advances including TurboID and TransitID enhanced the spatiotemporal resolution of PL. Third, PROTACs expand the scope of targeted protein degradation by leveraging the ubiquitin–proteasome system. Collectively, we highlight recent advancements in integrating mass spectrometry (MS) with these methodologies in the field of chemical proteomics.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"87 ","pages":"Article 102605"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in chemical proteomics for protein profiling and targeted degradation\",\"authors\":\"Peng-Kai Liu , Zicong Wang , Lingjun Li\",\"doi\":\"10.1016/j.cbpa.2025.102605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chemical proteomics has emerged as a powerful approach to decipher protein function, interactions, and targeted degradation pathways in complex biological systems. Recent advances in chemical labeling strategies, including activity-based protein profiling (ABPP), proximity labeling (PL), and proteolysis-targeting chimeras (PROTACs), have facilitated a deeper understanding of protein function and interaction networks. First, ABPP employs covalent probes to selectively label active enzymes, uncovering functional proteomics and drug–target interactions. Innovations such as PhosID-ABPP and streamlined cysteine ABPP have improved site-specific quantification and throughput, enabling proteome-wide analysis of enzyme activity and small-molecule interactions. Second, PL enables the characterization of transient protein–protein interactions using enzymatic or chemically triggered approaches. Advances including TurboID and TransitID enhanced the spatiotemporal resolution of PL. Third, PROTACs expand the scope of targeted protein degradation by leveraging the ubiquitin–proteasome system. Collectively, we highlight recent advancements in integrating mass spectrometry (MS) with these methodologies in the field of chemical proteomics.</div></div>\",\"PeriodicalId\":291,\"journal\":{\"name\":\"Current Opinion in Chemical Biology\",\"volume\":\"87 \",\"pages\":\"Article 102605\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367593125000377\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593125000377","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Recent advances in chemical proteomics for protein profiling and targeted degradation
Chemical proteomics has emerged as a powerful approach to decipher protein function, interactions, and targeted degradation pathways in complex biological systems. Recent advances in chemical labeling strategies, including activity-based protein profiling (ABPP), proximity labeling (PL), and proteolysis-targeting chimeras (PROTACs), have facilitated a deeper understanding of protein function and interaction networks. First, ABPP employs covalent probes to selectively label active enzymes, uncovering functional proteomics and drug–target interactions. Innovations such as PhosID-ABPP and streamlined cysteine ABPP have improved site-specific quantification and throughput, enabling proteome-wide analysis of enzyme activity and small-molecule interactions. Second, PL enables the characterization of transient protein–protein interactions using enzymatic or chemically triggered approaches. Advances including TurboID and TransitID enhanced the spatiotemporal resolution of PL. Third, PROTACs expand the scope of targeted protein degradation by leveraging the ubiquitin–proteasome system. Collectively, we highlight recent advancements in integrating mass spectrometry (MS) with these methodologies in the field of chemical proteomics.
期刊介绍:
COCHBI (Current Opinion in Chemical Biology) is a systematic review journal designed to offer specialists a unique and educational platform. Its goal is to help professionals stay informed about the growing volume of information in the field of Chemical Biology through systematic reviews.