Wu Deng , Xiankang Xin , Ruixuan Song , Xinzhou Yang , Weifeng Wang , Gaoming Yu
{"title":"A time series forecasting method for oil production based on Informer optimized by Bayesian optimization and the hyperband algorithm (BOHB)","authors":"Wu Deng , Xiankang Xin , Ruixuan Song , Xinzhou Yang , Weifeng Wang , Gaoming Yu","doi":"10.1016/j.compchemeng.2025.109068","DOIUrl":"10.1016/j.compchemeng.2025.109068","url":null,"abstract":"<div><div>Oil production forecasting is essential in the petroleum and natural gas sector, providing a fundamental basis for the adjustment of development plans and improving resource utilization efficiency for engineers and decision-makers. However, current deep learning models often struggle with long-term dependencies in long time series and high computational costs, limiting their effectiveness in complex time series forecasting tasks. This paper introduced the Informer model, an enhancement over the Transformer framework, to address these limitations. For evaluation and verification, the Informer model and reference models such as CNN, LSTM, GRU, CNN-GRU, and GRU-LSTM were applied to publicly available time-series datasets, and the optimal hyperparameters of the model were identified using Bayesian optimization and the hyperband algorithm (BOHB). The experimental results demonstrated that the Informer model outperformed others in computational speed, resource efficiency, and handling large-scale data, showing potential for practical applications in the future.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"197 ","pages":"Article 109068"},"PeriodicalIF":3.9,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143549411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucia Balsemão Furtado Logsdon , Virgilio José Martins Ferreira Filho , Paulo Cesar Ribas
{"title":"Optimization models and heuristics for effective pipeline decommissioning planning in the oil and gas industry","authors":"Lucia Balsemão Furtado Logsdon , Virgilio José Martins Ferreira Filho , Paulo Cesar Ribas","doi":"10.1016/j.compchemeng.2025.109044","DOIUrl":"10.1016/j.compchemeng.2025.109044","url":null,"abstract":"<div><div>Efficient operation sequencing is crucial in industrial processes to minimize delays and optimize resource utilization. This study focuses on the sequencing of operations for the recovery of decommissioned submarine pipelines, aiming to minimize project completion times. Unlike traditional sequencing problems, our approach incorporates unique constraints such as precedence relationships and the composition of trips for pipeline removal. We propose an optimization framework integrating a mathematical model and a hybrid solution that combines metaheuristic algorithms with exact methods for solving large-scale instances. Computational experiments were conducted on 40 instances of 100 pipelines each, randomly drawn from real-world data. The heuristic generated feasible initial solutions in all cases and enabled the mathematical model to find optimal solutions in 42.5% of the instances. However, in 35% of the cases, no feasible solutions were obtained within the time limit. For cases where the solver reached a solution, the average project completion time was 214.07 days, with a median of 0.0 and a standard deviation of 547.35 days. A real-world case study highlighted the practical applicability of the proposed approach. Using the constructive heuristic as the solver’s initial solution achieved the best result within 5000 s, with an objective function value of 9774 days. This work is particularly relevant in Brazil’s Oil and Gas industry, where deep-water flexible pipelines and strict environmental deadlines demand effective optimization models for decommissioning planning.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"197 ","pages":"Article 109044"},"PeriodicalIF":3.9,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dimitrios M. Fardis , Donghyun Oh , Nikolaos V. Sahinidis , Alejandro Garciadiego , Andrew Lee
{"title":"Surrogate modeling and optimization of the leaching process in a rare earth elements recovery plant","authors":"Dimitrios M. Fardis , Donghyun Oh , Nikolaos V. Sahinidis , Alejandro Garciadiego , Andrew Lee","doi":"10.1016/j.compchemeng.2025.109061","DOIUrl":"10.1016/j.compchemeng.2025.109061","url":null,"abstract":"<div><div>Critical minerals (CMs) and Rare Earth Elements (REEs) play a vital role in crucial infrastructure technologies such as renewable energy generation and batteries. Recovering them from waste materials has recently been found to significantly reduce environmental impact and supply chain costs related to these materials. In this work, we investigate surrogate modeling techniques aimed to simplify the modeling, simulation, and optimization of the leaching processes involved in CM and REE recovery flowsheets. As there is currently a lack of systematic studies on this topic, we perform extensive computational testing to ascertain which surrogate models are easier to construct and offer high predictive accuracy. Our results suggest that sparse quadratic models balance predictive accuracy and computational efficiency. Training and using these surrogates for global optimization of the leaching process requires two orders of magnitude fewer measurements and is up to four orders of magnitude faster than optimizing the original simulation using equation-oriented optimization or derivative-free optimization.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"197 ","pages":"Article 109061"},"PeriodicalIF":3.9,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143509479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Entropy-enhanced batch sampling and conformal learning in VGAE for physics-informed causal discovery and fault diagnosis","authors":"Mohammadhossein Modirrousta, Alireza Memarian, Biao Huang","doi":"10.1016/j.compchemeng.2025.109053","DOIUrl":"10.1016/j.compchemeng.2025.109053","url":null,"abstract":"<div><div>Industry 4.0 has increased the demand for advanced fault detection and diagnosis (FDD) in complex industrial processes. This research introduces a novel approach to causal discovery and FDD using Variational Graph Autoencoders (VGAEs) enhanced with physics-informed constraints and conformal learning. Our method addresses limitations in conventional techniques, such as Granger causality, which struggle with high-dimensional, nonlinear systems. By integrating Graph Convolutional Networks (GCNs) and an entropy-based dynamic edge sampling method, the framework focuses on high-uncertainty regions of the causal graph. Conformal learning establishes rigorous thresholds for causal inference. Validated through simulation and case studies, including an Australian refinery and the Tennessee Eastman Process, our approach improves causal discovery accuracy, reduces spurious connections, and enhances fault classification. Integrating domain-specific physics information also led to faster convergence and reduced computational demands. This research provides an efficient, statistically robust approach for causal discovery and FDD in complex industrial systems.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"197 ","pages":"Article 109053"},"PeriodicalIF":3.9,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143471227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Derrick Adams , Jay H. Lee , Shin Hyuk Kim , Seongmin Heo
{"title":"Noninvasive inline imaging and computer vision-based quality variable estimation for continuous slug-flow crystallizers","authors":"Derrick Adams , Jay H. Lee , Shin Hyuk Kim , Seongmin Heo","doi":"10.1016/j.compchemeng.2025.109067","DOIUrl":"10.1016/j.compchemeng.2025.109067","url":null,"abstract":"<div><div>This study presents a transformative approach for the real-time monitoring of continuous slug-flow crystallizers in the pharmaceutical and fine chemical industries, marking a shift from traditional batch processing to continuous manufacturing. By leveraging advanced computer vision techniques within inline imaging systems, including single, binocular, and trinocular stereo visions, we offer a novel solution for the multispatial monitoring and analysis of the crystallization process. This methodology facilitates the automatic detection of solution slugs and bulk crystal regions, enabling the estimation of dynamic bulk crystal density, slug volumes, and porosity in real time. The deployment of ResNet18 and Mask R-CNN models underpins the method's efficacy, demonstrating remarkable performance metrics: ResNet18 ensures precise image detection, while Mask R-CNN achieves an average precision (AP) of 96.4%, with 100% at both AP50 and AP75 thresholds for bulk crystals and solution slugs’ segmentation. These results validate the models’ accuracy and reliability in estimating quality variables essential for continuous slug flow crystallization. This advancement not only addresses the limitations of existing monitoring methods but also signifies a leap forward in applying computer vision for process monitoring, offering significant implications for enhancing decision-making, optimization, and control in continuous manufacturing operations.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"197 ","pages":"Article 109067"},"PeriodicalIF":3.9,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143471647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Smith, Dipanjan Ghosh, Andrew Tan, Xiang Cheng, Prodromos Daoutidis
{"title":"Multi-scale causality in active matter","authors":"Alexander Smith, Dipanjan Ghosh, Andrew Tan, Xiang Cheng, Prodromos Daoutidis","doi":"10.1016/j.compchemeng.2025.109052","DOIUrl":"10.1016/j.compchemeng.2025.109052","url":null,"abstract":"<div><div>Deciphering how local interactions drive self-assembly and multi-scale organization is essential for understanding active matter systems, such as self-organizing bacterial colonies. This study combines topological data analysis with causal discovery to capture the complex, hierarchical causality within these dynamic systems. By leveraging the Euler characteristic as a topological descriptor, we reduce high-dimensional, multi-scale data into essential structural representations, enabling efficient, meaningful analysis. Through causal discovery methods applied to the topology of these dynamic, multi-scale structures, we reveal how localized bacterial interactions propagate, guiding global organization in systems with both homogeneous and heterogeneous ordering. The findings indicate that, while ordering patterns may differ, the mechanisms underlying multi-scale self-assembly remain consistent, with information flowing primarily from local, highly-ordered structures. This framework enhances understanding of self-organization principles and supports applications requiring scalable causal analysis in complex data environments across natural and synthetic active matter.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"197 ","pages":"Article 109052"},"PeriodicalIF":3.9,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143509477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martin Bubel , Jochen Schmid , Maximilian Carmesin , Volodymyr Kozachynskyi , Erik Esche , Michael Bortz
{"title":"Cubature-based uncertainty estimation for nonlinear regression models","authors":"Martin Bubel , Jochen Schmid , Maximilian Carmesin , Volodymyr Kozachynskyi , Erik Esche , Michael Bortz","doi":"10.1016/j.compchemeng.2025.109035","DOIUrl":"10.1016/j.compchemeng.2025.109035","url":null,"abstract":"<div><div>Models are commonly utilized in chemical engineering to simulate real-world processes and phenomena. Given their role in guiding decision-making, accurately quantifying the uncertainty of these models is essential. Typically, these models are calibrated using experimental data that contain measurement errors, leading to uncertainty in the fitted model parameters. Current methods for estimating the prediction uncertainty of nonlinear regression models are often either computationally intensive or biased. In this study, we use sparse cubature formulas to estimate the prediction uncertainty of nonlinear regression models. Our findings indicate that this method provides a favorable balance between accuracy and computational efficiency, making it suitable for application in chemical engineering. We validate the performance of our proposed method through various regression case studies, including both theoretical toy models and practical models from chemical engineering.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"197 ","pages":"Article 109035"},"PeriodicalIF":3.9,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143592108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ting Wu , Peilin Zhan , Wei Chen , Miaoqing Lin , Quanyuan Qiu , Yinan Hu , Jiuhang Song , Xiaoqing Lin
{"title":"ChemBERTa embeddings and ensemble learning for prediction of density and melting point of deep eutectic solvents with hybrid features","authors":"Ting Wu , Peilin Zhan , Wei Chen , Miaoqing Lin , Quanyuan Qiu , Yinan Hu , Jiuhang Song , Xiaoqing Lin","doi":"10.1016/j.compchemeng.2025.109065","DOIUrl":"10.1016/j.compchemeng.2025.109065","url":null,"abstract":"<div><div>Deep eutectic solvents (DESs) are sustainable alternatives to traditional solvents, but their structural complexity makes accurate prediction of melting points and densities challenging. This study utilizes ChemBERTa, a pre-trained Transformer model, to extract high-dimensional embeddings from Simplified Molecular Input Line Entry System (SMILES) strings, effectively capturing complex molecular interactions and subtle structural features. Through feature importance analysis, we identified missing molecular information in the ChemBERTa embeddings and supplemented it with select physicochemical descriptors from RDKit, creating a feature set that enhances both interpretability and predictive accuracy. Optimized ensemble models, including ExtraTreesRegressor (ETR) and XGBRegressor (XGBR), are then applied to this enriched feature set, achieving notable improvements in prediction accuracy for DES melting point and density. Rigorous grid search and ten-fold cross-validation ensure model robustness and generalizability. Experimental results confirm the effectiveness of this approach, underscoring the transformative role of pre-trained deep learning models in chemical informatics and supporting scalable, sustainable DESs design.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"196 ","pages":"Article 109065"},"PeriodicalIF":3.9,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143429981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Baldea , Apostolos T. Georgiou , Bhushan Gopaluni , Mehmet Mercangöz , Constantinos C. Pantelides , Kiran Sheth , Victor M. Zavala , Christos Georgakis
{"title":"From automated to autonomous process operations","authors":"Michael Baldea , Apostolos T. Georgiou , Bhushan Gopaluni , Mehmet Mercangöz , Constantinos C. Pantelides , Kiran Sheth , Victor M. Zavala , Christos Georgakis","doi":"10.1016/j.compchemeng.2025.109064","DOIUrl":"10.1016/j.compchemeng.2025.109064","url":null,"abstract":"<div><div>This paper considers current trends towards a higher degree of automation of process operations. Often referred to as “autonomous” process operations, these developments involve cyber-physical systems that can automate tasks that have hitherto relied extensively on human plant operators and, in particular, on their accurate assessment of the current plant situation based on a multitude of information sources, and on their ability to devise and implement plans of actions for dealing with often novel situations. The paper analyses the main drivers behind the need for a higher level of automation in process operations, and reviews the industrial applications that have been described in the public domain to date. It also presents a review of advances and potential impact of some of the enabling technologies for autonomy; these include sensors, mathematical modelling abstractions, reinforcement learning, knowledge graphs, and large language models.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"196 ","pages":"Article 109064"},"PeriodicalIF":3.9,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143452982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Piecewise linear approximation using J1 compatible triangulations for efficient MILP representation","authors":"Felix Birkelbach","doi":"10.1016/j.compchemeng.2025.109042","DOIUrl":"10.1016/j.compchemeng.2025.109042","url":null,"abstract":"<div><div>For including piecewise linear (PWL) functions in MILP problems, the logarithmic convex combination (Log) formulation has been shown to yield very fast solving times. However, identifying approximations that can be used with Log is a big challenge since the approximation has to be compatible with a J1 triangulation. In this article, an algorithm is proposed that identifies approximations using J1 compatible triangulations. It seeks to satisfy the specified error tolerance with the minimum number of linear pieces, so that the MILP formulation is small. To evaluate the performance of the J1 approach it is applied to two sets of benchmark functions from literature and results are compared to state-of-the-art approaches.</div><div>Overall the J1 approach is shown to efficiently approximate functions in up to 3 dimensions. Especially for tight error tolerances, these J1 approximations require fewer auxiliary variables in MILP compared to alternative approaches.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"196 ","pages":"Article 109042"},"PeriodicalIF":3.9,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143429979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}