Cubature-based uncertainty estimation for nonlinear regression models

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Martin Bubel , Jochen Schmid , Maximilian Carmesin , Volodymyr Kozachynskyi , Erik Esche , Michael Bortz
{"title":"Cubature-based uncertainty estimation for nonlinear regression models","authors":"Martin Bubel ,&nbsp;Jochen Schmid ,&nbsp;Maximilian Carmesin ,&nbsp;Volodymyr Kozachynskyi ,&nbsp;Erik Esche ,&nbsp;Michael Bortz","doi":"10.1016/j.compchemeng.2025.109035","DOIUrl":null,"url":null,"abstract":"<div><div>Models are commonly utilized in chemical engineering to simulate real-world processes and phenomena. Given their role in guiding decision-making, accurately quantifying the uncertainty of these models is essential. Typically, these models are calibrated using experimental data that contain measurement errors, leading to uncertainty in the fitted model parameters. Current methods for estimating the prediction uncertainty of nonlinear regression models are often either computationally intensive or biased. In this study, we use sparse cubature formulas to estimate the prediction uncertainty of nonlinear regression models. Our findings indicate that this method provides a favorable balance between accuracy and computational efficiency, making it suitable for application in chemical engineering. We validate the performance of our proposed method through various regression case studies, including both theoretical toy models and practical models from chemical engineering.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"197 ","pages":"Article 109035"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000390","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Models are commonly utilized in chemical engineering to simulate real-world processes and phenomena. Given their role in guiding decision-making, accurately quantifying the uncertainty of these models is essential. Typically, these models are calibrated using experimental data that contain measurement errors, leading to uncertainty in the fitted model parameters. Current methods for estimating the prediction uncertainty of nonlinear regression models are often either computationally intensive or biased. In this study, we use sparse cubature formulas to estimate the prediction uncertainty of nonlinear regression models. Our findings indicate that this method provides a favorable balance between accuracy and computational efficiency, making it suitable for application in chemical engineering. We validate the performance of our proposed method through various regression case studies, including both theoretical toy models and practical models from chemical engineering.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信