Noninvasive inline imaging and computer vision-based quality variable estimation for continuous slug-flow crystallizers

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Derrick Adams , Jay H. Lee , Shin Hyuk Kim , Seongmin Heo
{"title":"Noninvasive inline imaging and computer vision-based quality variable estimation for continuous slug-flow crystallizers","authors":"Derrick Adams ,&nbsp;Jay H. Lee ,&nbsp;Shin Hyuk Kim ,&nbsp;Seongmin Heo","doi":"10.1016/j.compchemeng.2025.109067","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a transformative approach for the real-time monitoring of continuous slug-flow crystallizers in the pharmaceutical and fine chemical industries, marking a shift from traditional batch processing to continuous manufacturing. By leveraging advanced computer vision techniques within inline imaging systems, including single, binocular, and trinocular stereo visions, we offer a novel solution for the multispatial monitoring and analysis of the crystallization process. This methodology facilitates the automatic detection of solution slugs and bulk crystal regions, enabling the estimation of dynamic bulk crystal density, slug volumes, and porosity in real time. The deployment of ResNet18 and Mask R-CNN models underpins the method's efficacy, demonstrating remarkable performance metrics: ResNet18 ensures precise image detection, while Mask R-CNN achieves an average precision (AP) of 96.4%, with 100% at both AP50 and AP75 thresholds for bulk crystals and solution slugs’ segmentation. These results validate the models’ accuracy and reliability in estimating quality variables essential for continuous slug flow crystallization. This advancement not only addresses the limitations of existing monitoring methods but also signifies a leap forward in applying computer vision for process monitoring, offering significant implications for enhancing decision-making, optimization, and control in continuous manufacturing operations.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"197 ","pages":"Article 109067"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000717","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a transformative approach for the real-time monitoring of continuous slug-flow crystallizers in the pharmaceutical and fine chemical industries, marking a shift from traditional batch processing to continuous manufacturing. By leveraging advanced computer vision techniques within inline imaging systems, including single, binocular, and trinocular stereo visions, we offer a novel solution for the multispatial monitoring and analysis of the crystallization process. This methodology facilitates the automatic detection of solution slugs and bulk crystal regions, enabling the estimation of dynamic bulk crystal density, slug volumes, and porosity in real time. The deployment of ResNet18 and Mask R-CNN models underpins the method's efficacy, demonstrating remarkable performance metrics: ResNet18 ensures precise image detection, while Mask R-CNN achieves an average precision (AP) of 96.4%, with 100% at both AP50 and AP75 thresholds for bulk crystals and solution slugs’ segmentation. These results validate the models’ accuracy and reliability in estimating quality variables essential for continuous slug flow crystallization. This advancement not only addresses the limitations of existing monitoring methods but also signifies a leap forward in applying computer vision for process monitoring, offering significant implications for enhancing decision-making, optimization, and control in continuous manufacturing operations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信