基于cubatu的非线性回归模型的不确定性估计

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Martin Bubel , Jochen Schmid , Maximilian Carmesin , Volodymyr Kozachynskyi , Erik Esche , Michael Bortz
{"title":"基于cubatu的非线性回归模型的不确定性估计","authors":"Martin Bubel ,&nbsp;Jochen Schmid ,&nbsp;Maximilian Carmesin ,&nbsp;Volodymyr Kozachynskyi ,&nbsp;Erik Esche ,&nbsp;Michael Bortz","doi":"10.1016/j.compchemeng.2025.109035","DOIUrl":null,"url":null,"abstract":"<div><div>Models are commonly utilized in chemical engineering to simulate real-world processes and phenomena. Given their role in guiding decision-making, accurately quantifying the uncertainty of these models is essential. Typically, these models are calibrated using experimental data that contain measurement errors, leading to uncertainty in the fitted model parameters. Current methods for estimating the prediction uncertainty of nonlinear regression models are often either computationally intensive or biased. In this study, we use sparse cubature formulas to estimate the prediction uncertainty of nonlinear regression models. Our findings indicate that this method provides a favorable balance between accuracy and computational efficiency, making it suitable for application in chemical engineering. We validate the performance of our proposed method through various regression case studies, including both theoretical toy models and practical models from chemical engineering.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"197 ","pages":"Article 109035"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cubature-based uncertainty estimation for nonlinear regression models\",\"authors\":\"Martin Bubel ,&nbsp;Jochen Schmid ,&nbsp;Maximilian Carmesin ,&nbsp;Volodymyr Kozachynskyi ,&nbsp;Erik Esche ,&nbsp;Michael Bortz\",\"doi\":\"10.1016/j.compchemeng.2025.109035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Models are commonly utilized in chemical engineering to simulate real-world processes and phenomena. Given their role in guiding decision-making, accurately quantifying the uncertainty of these models is essential. Typically, these models are calibrated using experimental data that contain measurement errors, leading to uncertainty in the fitted model parameters. Current methods for estimating the prediction uncertainty of nonlinear regression models are often either computationally intensive or biased. In this study, we use sparse cubature formulas to estimate the prediction uncertainty of nonlinear regression models. Our findings indicate that this method provides a favorable balance between accuracy and computational efficiency, making it suitable for application in chemical engineering. We validate the performance of our proposed method through various regression case studies, including both theoretical toy models and practical models from chemical engineering.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"197 \",\"pages\":\"Article 109035\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425000390\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000390","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在化学工程中,模型通常用于模拟真实世界的过程和现象。考虑到它们在指导决策方面的作用,准确量化这些模型的不确定性至关重要。通常,这些模型使用包含测量误差的实验数据进行校准,导致拟合模型参数的不确定性。目前估计非线性回归模型预测不确定性的方法要么计算量大,要么有偏差。在本研究中,我们使用稀疏模型公式来估计非线性回归模型的预测不确定性。我们的研究结果表明,该方法在精度和计算效率之间取得了良好的平衡,适合在化学工程中应用。我们通过各种回归案例研究验证了我们提出的方法的性能,包括理论玩具模型和来自化学工程的实际模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cubature-based uncertainty estimation for nonlinear regression models
Models are commonly utilized in chemical engineering to simulate real-world processes and phenomena. Given their role in guiding decision-making, accurately quantifying the uncertainty of these models is essential. Typically, these models are calibrated using experimental data that contain measurement errors, leading to uncertainty in the fitted model parameters. Current methods for estimating the prediction uncertainty of nonlinear regression models are often either computationally intensive or biased. In this study, we use sparse cubature formulas to estimate the prediction uncertainty of nonlinear regression models. Our findings indicate that this method provides a favorable balance between accuracy and computational efficiency, making it suitable for application in chemical engineering. We validate the performance of our proposed method through various regression case studies, including both theoretical toy models and practical models from chemical engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信