Surrogate modeling and optimization of the leaching process in a rare earth elements recovery plant

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Dimitrios M. Fardis , Donghyun Oh , Nikolaos V. Sahinidis , Alejandro Garciadiego , Andrew Lee
{"title":"Surrogate modeling and optimization of the leaching process in a rare earth elements recovery plant","authors":"Dimitrios M. Fardis ,&nbsp;Donghyun Oh ,&nbsp;Nikolaos V. Sahinidis ,&nbsp;Alejandro Garciadiego ,&nbsp;Andrew Lee","doi":"10.1016/j.compchemeng.2025.109061","DOIUrl":null,"url":null,"abstract":"<div><div>Critical minerals (CMs) and Rare Earth Elements (REEs) play a vital role in crucial infrastructure technologies such as renewable energy generation and batteries. Recovering them from waste materials has recently been found to significantly reduce environmental impact and supply chain costs related to these materials. In this work, we investigate surrogate modeling techniques aimed to simplify the modeling, simulation, and optimization of the leaching processes involved in CM and REE recovery flowsheets. As there is currently a lack of systematic studies on this topic, we perform extensive computational testing to ascertain which surrogate models are easier to construct and offer high predictive accuracy. Our results suggest that sparse quadratic models balance predictive accuracy and computational efficiency. Training and using these surrogates for global optimization of the leaching process requires two orders of magnitude fewer measurements and is up to four orders of magnitude faster than optimizing the original simulation using equation-oriented optimization or derivative-free optimization.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"197 ","pages":"Article 109061"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000651","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Critical minerals (CMs) and Rare Earth Elements (REEs) play a vital role in crucial infrastructure technologies such as renewable energy generation and batteries. Recovering them from waste materials has recently been found to significantly reduce environmental impact and supply chain costs related to these materials. In this work, we investigate surrogate modeling techniques aimed to simplify the modeling, simulation, and optimization of the leaching processes involved in CM and REE recovery flowsheets. As there is currently a lack of systematic studies on this topic, we perform extensive computational testing to ascertain which surrogate models are easier to construct and offer high predictive accuracy. Our results suggest that sparse quadratic models balance predictive accuracy and computational efficiency. Training and using these surrogates for global optimization of the leaching process requires two orders of magnitude fewer measurements and is up to four orders of magnitude faster than optimizing the original simulation using equation-oriented optimization or derivative-free optimization.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信