ChemBERTa embeddings and ensemble learning for prediction of density and melting point of deep eutectic solvents with hybrid features

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ting Wu , Peilin Zhan , Wei Chen , Miaoqing Lin , Quanyuan Qiu , Yinan Hu , Jiuhang Song , Xiaoqing Lin
{"title":"ChemBERTa embeddings and ensemble learning for prediction of density and melting point of deep eutectic solvents with hybrid features","authors":"Ting Wu ,&nbsp;Peilin Zhan ,&nbsp;Wei Chen ,&nbsp;Miaoqing Lin ,&nbsp;Quanyuan Qiu ,&nbsp;Yinan Hu ,&nbsp;Jiuhang Song ,&nbsp;Xiaoqing Lin","doi":"10.1016/j.compchemeng.2025.109065","DOIUrl":null,"url":null,"abstract":"<div><div>Deep eutectic solvents (DESs) are sustainable alternatives to traditional solvents, but their structural complexity makes accurate prediction of melting points and densities challenging. This study utilizes ChemBERTa, a pre-trained Transformer model, to extract high-dimensional embeddings from Simplified Molecular Input Line Entry System (SMILES) strings, effectively capturing complex molecular interactions and subtle structural features. Through feature importance analysis, we identified missing molecular information in the ChemBERTa embeddings and supplemented it with select physicochemical descriptors from RDKit, creating a feature set that enhances both interpretability and predictive accuracy. Optimized ensemble models, including ExtraTreesRegressor (ETR) and XGBRegressor (XGBR), are then applied to this enriched feature set, achieving notable improvements in prediction accuracy for DES melting point and density. Rigorous grid search and ten-fold cross-validation ensure model robustness and generalizability. Experimental results confirm the effectiveness of this approach, underscoring the transformative role of pre-trained deep learning models in chemical informatics and supporting scalable, sustainable DESs design.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"196 ","pages":"Article 109065"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000699","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep eutectic solvents (DESs) are sustainable alternatives to traditional solvents, but their structural complexity makes accurate prediction of melting points and densities challenging. This study utilizes ChemBERTa, a pre-trained Transformer model, to extract high-dimensional embeddings from Simplified Molecular Input Line Entry System (SMILES) strings, effectively capturing complex molecular interactions and subtle structural features. Through feature importance analysis, we identified missing molecular information in the ChemBERTa embeddings and supplemented it with select physicochemical descriptors from RDKit, creating a feature set that enhances both interpretability and predictive accuracy. Optimized ensemble models, including ExtraTreesRegressor (ETR) and XGBRegressor (XGBR), are then applied to this enriched feature set, achieving notable improvements in prediction accuracy for DES melting point and density. Rigorous grid search and ten-fold cross-validation ensure model robustness and generalizability. Experimental results confirm the effectiveness of this approach, underscoring the transformative role of pre-trained deep learning models in chemical informatics and supporting scalable, sustainable DESs design.

Abstract Image

ChemBERTa嵌入和集成学习用于预测具有混合特征的深共晶溶剂的密度和熔点
深度共晶溶剂(DESs)是传统溶剂的可持续替代品,但其结构复杂性使得准确预测熔点和密度具有挑战性。本研究利用ChemBERTa,一个预先训练的Transformer模型,从简化分子输入线输入系统(SMILES)字符串中提取高维嵌入,有效捕获复杂的分子相互作用和微妙的结构特征。通过特征重要性分析,我们确定了ChemBERTa嵌入中缺失的分子信息,并用RDKit中选择的物理化学描述符进行补充,创建了一个增强可解释性和预测准确性的特征集。然后将优化的集成模型(包括ExtraTreesRegressor (ETR)和XGBRegressor (XGBR))应用于该丰富的特征集,显著提高了DES熔点和密度的预测精度。严格的网格搜索和十倍交叉验证确保了模型的鲁棒性和泛化性。实验结果证实了这种方法的有效性,强调了预训练深度学习模型在化学信息学中的变革作用,并支持可扩展、可持续的DESs设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信