Multi-scale causality in active matter

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Alexander Smith, Dipanjan Ghosh, Andrew Tan, Xiang Cheng, Prodromos Daoutidis
{"title":"Multi-scale causality in active matter","authors":"Alexander Smith,&nbsp;Dipanjan Ghosh,&nbsp;Andrew Tan,&nbsp;Xiang Cheng,&nbsp;Prodromos Daoutidis","doi":"10.1016/j.compchemeng.2025.109052","DOIUrl":null,"url":null,"abstract":"<div><div>Deciphering how local interactions drive self-assembly and multi-scale organization is essential for understanding active matter systems, such as self-organizing bacterial colonies. This study combines topological data analysis with causal discovery to capture the complex, hierarchical causality within these dynamic systems. By leveraging the Euler characteristic as a topological descriptor, we reduce high-dimensional, multi-scale data into essential structural representations, enabling efficient, meaningful analysis. Through causal discovery methods applied to the topology of these dynamic, multi-scale structures, we reveal how localized bacterial interactions propagate, guiding global organization in systems with both homogeneous and heterogeneous ordering. The findings indicate that, while ordering patterns may differ, the mechanisms underlying multi-scale self-assembly remain consistent, with information flowing primarily from local, highly-ordered structures. This framework enhances understanding of self-organization principles and supports applications requiring scalable causal analysis in complex data environments across natural and synthetic active matter.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"197 ","pages":"Article 109052"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000560","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Deciphering how local interactions drive self-assembly and multi-scale organization is essential for understanding active matter systems, such as self-organizing bacterial colonies. This study combines topological data analysis with causal discovery to capture the complex, hierarchical causality within these dynamic systems. By leveraging the Euler characteristic as a topological descriptor, we reduce high-dimensional, multi-scale data into essential structural representations, enabling efficient, meaningful analysis. Through causal discovery methods applied to the topology of these dynamic, multi-scale structures, we reveal how localized bacterial interactions propagate, guiding global organization in systems with both homogeneous and heterogeneous ordering. The findings indicate that, while ordering patterns may differ, the mechanisms underlying multi-scale self-assembly remain consistent, with information flowing primarily from local, highly-ordered structures. This framework enhances understanding of self-organization principles and supports applications requiring scalable causal analysis in complex data environments across natural and synthetic active matter.
活性物质的多尺度因果关系
破译局部相互作用如何驱动自组装和多尺度组织对于理解活性物质系统(如自组织细菌菌落)至关重要。本研究将拓扑数据分析与因果发现相结合,以捕捉这些动态系统中复杂的、分层的因果关系。通过利用欧拉特征作为拓扑描述符,我们将高维、多尺度数据简化为基本的结构表示,从而实现高效、有意义的分析。通过应用于这些动态、多尺度结构的拓扑结构的因果发现方法,我们揭示了局部细菌相互作用如何传播,在同质和异质有序的系统中指导全局组织。研究结果表明,尽管有序模式可能不同,但多尺度自组装的机制是一致的,信息主要来自局部的、高度有序的结构。该框架增强了对自组织原理的理解,并支持需要在跨天然和合成活性物质的复杂数据环境中进行可扩展因果分析的应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信