{"title":"Joule debonding of carbon reinforced polymer (CFRP) lap shear joints bonded with graphene nanoplatelets (GNPs)/epoxy nanocomposites","authors":"","doi":"10.1016/j.compositesa.2024.108535","DOIUrl":"10.1016/j.compositesa.2024.108535","url":null,"abstract":"<div><div>The potential of Joule heating CFRPs joints bonded with conductive graphene/epoxy nanocomposites as adhesives for a selective debonding was investigated. To ensure a localized softening of the bondline without altering the adherend’s structure, the epoxy used in the adhesive’s formulation was chosen to have a considerably lower <em>T<sub>g</sub></em> than the adherend. Joule heating the bondline considerably reduced the lap shear strength (LSS) relative to when the test was performed at room temperature, due to thermally induced structural changes promoted in the polymer network, which was consistent with the nanocomposites’ thermomechanical behavior predicted by DMTA. The minimum LSS value was reached in the vicinity of the adhesive’s <em>T<sub>g</sub></em>, allowing an ease deconstruction of the joints. SEM characterization of their fracture surfaces revealed that by controlling the adhesive’s formulation and their Joule heating the joints’ failure mechanism can be tuned to ensure the recovery of undamaged adherends that can be reused.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of the Weibull modulus on the shape of the stress–strain curves of thin-ply pseudo-ductile hybrid composites","authors":"","doi":"10.1016/j.compositesa.2024.108532","DOIUrl":"10.1016/j.compositesa.2024.108532","url":null,"abstract":"<div><div>This paper presents a numerical approach using ABAQUS CAE scripting to simulate the mechanical response of thin-ply pseudo-ductile hybrid composites. A parametric study demonstrates that interface critical fracture energy is essential for accurately modeling damage mechanisms and mechanical behavior. Correct shear strength identification enables the model to capture experimental observations, including fragmentation and the plateau region in the stress–strain curve. The analysis shows that the mechanical behavior of these composites is largely independent of fragmentation location patterns in the low-strain layer. Results emphasize the significant impact of the Weibull modulus on the stress–strain response, with careful selection leading to strong correlation with experimental data. Notable differences in best-fit Weibull moduli were observed for different materials, with higher values for high modulus carbon fibers.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low-velocity impact response of hybrid sheet moulding compound composite laminates","authors":"","doi":"10.1016/j.compositesa.2024.108527","DOIUrl":"10.1016/j.compositesa.2024.108527","url":null,"abstract":"<div><div>This work presents a comprehensive study on the impact damage tolerance of Sheet Moulding Compounds (SMCs). The performance of glass, carbon and hybrid glass/carbon SMCs are compared by means of tensile, compression, low-velocity impact and compression after impact experiments. Damage analysis of the impacted laminates was performed by ultrasonic and X-ray methodologies. The glass SMC exhibited the highest damage tolerance in low-velocity impact with the smallest damaged area, crack density and loss in compression after impact (CAI) strength. On the other hand, the carbon SMC demonstrated superior in-plane stiffness and strength, but exhibited a large damaged area and crack density under impact. The hybrid SMC displayed an optimal compromise, exhibiting intermediate tensile in-plane performance and excellent damage tolerance at lower impact energy levels, but suffered from extensive delamination at the highest impact energy. Overall, the findings highlight the suitability of hybrid SMCs for structural applications with potential impact risks.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of rapid decompression failure in polymer liner of Type IV hydrogen storage vessels using a novel fluid–solid coupling model","authors":"","doi":"10.1016/j.compositesa.2024.108531","DOIUrl":"10.1016/j.compositesa.2024.108531","url":null,"abstract":"<div><div>Type IV vessels have been developed for hydrogen storage systems, but the rapid decompression failure during the decompression process can lead to the collapse of the liner, significantly reducing the lifespan of vessels. This study aims to investigate nonlinear buckling behaviors and collapse mechanisms of polymer liner in Type IV hydrogen storage vessels. Considering the intrinsic coupling between hydrogen gas decompression and mechanical behavior of vessels, a fluid–solid coupling model for the decompression process of Type IV vessels was proposed using the fluid cavity techniques and HyperMesh. Results indicated that the pressure difference generated on the liner is the primary cause leading to the polymer liner collapse. The critical pressure difference significantly increases with the thickness of the liner, while it decreases nonlinearly with the increase in void defect size. Parametric sensitivity analysis highlighted the depth of initial void defect and the liner thickness as two significant influencing factors in the critical decompression rate.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In-plane properties of an in-situ consolidated automated fiber placement thermoplastic composite","authors":"","doi":"10.1016/j.compositesa.2024.108525","DOIUrl":"10.1016/j.compositesa.2024.108525","url":null,"abstract":"<div><div>Automated fiber placement (AFP) has been employed to manufacture aerospace structures for decades, with a recent focus on thermoplastic composites (TPCs). The in-situ consolidation AFP of TPCs is pursued as an energy-efficient additive manufacturing (AM) approach for fabricating composite structures. This work compares the in-plane mechanical properties of in-situ consolidated coupons with those of compression molded counterparts to provide new insights into their failure mechanics and processing-structure relationships. Tensile and compressive properties along the fiber and transverse directions, in-plane shear properties, and short beam strength were measured for all samples. Failure modes and mechanics in tested coupons were related to AFP defects and processing, i.e., resultant crystallinities, fiber misalignment, matrix mechanical properties, porosity, and fiber–matrix interfacial strength. The findings of this study can be used to guide the manufacturing of future TPC structures and potentially open new avenues for applications where post-processing is not feasible or reduced mechanical performance is acceptable.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Translaminar fracture in (non–)hybrid thin-ply fibre-reinforced composites: An in-depth examination through a novel mini-compact tension specimen compatible with microscale 4D computed tomography","authors":"","doi":"10.1016/j.compositesa.2024.108529","DOIUrl":"10.1016/j.compositesa.2024.108529","url":null,"abstract":"<div><div>Translaminar fracture toughness is pivotal for notch sensitivity and damage tolerance of fibre-reinforced composites. Hybridisation offers a promising pathway for enhancing this parameter in thin-ply composites. Three novel mini-compact tension specimen geometries were investigated for their competence in microscale characterisation of translaminar fracture using in-situ synchrotron radiation computed tomography (SRCT). Only “mini-protruded” design resulted in stable crack propagation with adequate crack increments. Based on this design, five baseline and hybrid cross-ply configurations incorporating low- and high-strain carbon fibres were studied. Crack propagation in low- and high-strain baseline configurations was stable. For interlayer and intrayarn fibre-hybrid configurations, a correlation between load–displacement curves and delamination is observed. The SRCT data confirmed that 90° ply-blocks cushion the interaction between 0° plies, enabling independent fracture. Additionally, crack fronts in 90° plies advance further than those in 0° plies. Moreover, mechanical interlocking and bundle bending within 0° plies serve as supplementary mechanisms for energy dissipation.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bearing performance and progressive failure analysis of bolted joint in 3D printed pseudo-woven CFRP composite with fibre steering","authors":"","doi":"10.1016/j.compositesa.2024.108526","DOIUrl":"10.1016/j.compositesa.2024.108526","url":null,"abstract":"<div><div>This study investigates the bearing failure process of 3D printed pseudo-woven carbon fibre reinforced polymer (CFRP) composite joints, with a particular focus on the damage mechanisms influenced by steered fibres. A multiscale finite element model employing LaRC05 failure criteria is developed and validated against the experimental load–displacement curves and micro-computed microtomography (CT) images of four distinct cases. The model clearly demonstrates the critical importance of maintaining fibre continuity around the bolt hole, as this significantly influences the ability to reduce stress concentrations caused by the direct bearing loads from the bolt. Moreover, the model reveals that fibre steering can substantially improve the composite joint’s performance. This enhancement is achieved by adjusting the level of shear-induced damage propagation in individual filaments. The results demonstrate the potential and capability of the model to capture individual filament behaviour for the failure analysis of 3D printed composites, achieving good correlations with experimental measurements and observations, in terms of failure modes and load-bearing capacities.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The moisture absorption of additively manufactured short carbon fibre reinforced polyamide","authors":"","doi":"10.1016/j.compositesa.2024.108528","DOIUrl":"10.1016/j.compositesa.2024.108528","url":null,"abstract":"<div><div>Polymer composites are commonly exposed to moisture and undergo reductions in mechanical properties. It is challenging to describe the moisture absorption dynamics of 3D printed parts due to manufacture-induced microstructures. This work investigates the moisture absorption of printed short carbon fibre reinforced polyamide (SFRP) with varied microstructures and its impact on mechanical properties. The printed SFRP have inferior microstructures and diffusivity increases with the number of interlayer interfaces by up to 119%, which is 258% higher than that of compression moulded composite. The yield stress and tensile modulus of SFRP decrease by up to 59% and 79%, respectively. This deterioration is irreversible and more significant than injection moulded samples as the microstructure is permanently degraded by moisture. Additionally, the shear moduli of printed polyamide and SFRP decrease by up to 63% and 74%, respectively. The results are crucial for prediction, evaluation, and maintenance of 3D printed applications in humid conditions.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using higher rates of stabilization of a wet-spun pan fibre to understand the effect of microstructure on the tensile and compressive properties of carbon fibre","authors":"","doi":"10.1016/j.compositesa.2024.108524","DOIUrl":"10.1016/j.compositesa.2024.108524","url":null,"abstract":"<div><div>The transformation of a polyacrylonitrile (PAN) precursor fibre into carbon fibre using varying stabilization times during carbon fibre manufacture is presented in this work. The wet-spun precursor fibre is a specifically designed PAN co-polymer made up of acrylonitrile, methyl acrylate and 3 wt% itaconic acid. The residence or stabilization times in the oxidation ovens are varied from 32, 64 and 96 min, enabling investigation of the impact upon microstructure upon tensile and compressive properties. Using a continuous pilot scale carbonization line for faster cyclization and dehydrogenation, the precursor fibres exhibited lower oxygen uptake contributing to the formation of a less dense and more amorphous carbon fibre. Synchrotron based SAXS-WAXS characterisation and Raman spectroscopy of the carbon fibre microstructure displays lower orientation and crystallinity, with higher void concentration. This led to lower electrical conductivity, lower tensile strength (19 %) but higher compressive strength (27 %) when reducing stabilisation times from 96 to 32 min.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Breadth-first search algorithm on the finite element simulation of the electrical resistivity of the carbon black elastomeric pressurized sensor","authors":"","doi":"10.1016/j.compositesa.2024.108523","DOIUrl":"10.1016/j.compositesa.2024.108523","url":null,"abstract":"<div><div>Resistivity and piezoresistive sensitivity of Carbon Black (CB) elastomeric nanocomposites are studied using a finite element method with a conductive network model. CB spheres are placed into Representative Volume Elements (RVEs) in random positions to perform simulations and obtain the strained state and new position of particles. Numerical results are implemented into a breadth-first search algorithm tailored to find percolation pathways from one end of the RVE to another based on the shortest distance between CBs in the strained regime. Percolation pathways are used by the conductive network model to determine the critical distance for resistivity. Resistivity diminishes as the critical distance increases attributed to a greater number of electrons penetrating the barriers. Critical distance at which tunneling can occur expands with an increase in barrier potential. Smaller CBs that can more efficiently occupy the gaps lead to a reduction in the critical distance range necessary for percolation to happen.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}