丁腈橡胶/PCL纳米纤维对碳/环氧复合材料的温度依赖增韧:I型断裂和损伤机制

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING
Hesamaldin Saghafi , Isa Ahmadi , Ramin Khamedi , Hamed Saghafi , Tommaso Maria Brugo , Emanuele Maccaferri , Francesco Mongioì , Andrea Zucchelli
{"title":"丁腈橡胶/PCL纳米纤维对碳/环氧复合材料的温度依赖增韧:I型断裂和损伤机制","authors":"Hesamaldin Saghafi ,&nbsp;Isa Ahmadi ,&nbsp;Ramin Khamedi ,&nbsp;Hamed Saghafi ,&nbsp;Tommaso Maria Brugo ,&nbsp;Emanuele Maccaferri ,&nbsp;Francesco Mongioì ,&nbsp;Andrea Zucchelli","doi":"10.1016/j.compositesa.2025.109321","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluates the temperature-dependent toughening effect of rubbery NBR/PCL nanofibers in carbon/epoxy composites under mode I loading. Double Cantilever Beam (DCB) tests at six temperatures (−30 °C to 120 °C) measured interlaminar fracture toughness in non-modified and nano-modified laminates. At 30 °C, modified specimens achieved 164 % higher initiation toughness and 394 % higher propagation toughness than non-modified ones, driven by nano-modified interactions that enhanced energy dissipation through plastic deformation and fiber bridging. However, at elevated temperatures (90 °C and 120 °C), toughness declined sharply due to modified matrix softening above the rubber’s glass transition temperature (T<sub>g</sub>) and PCL melting point, impairing crack-bridging efficacy. Fractographic analysis revealed contrasting failure modes: non-modified specimens exhibited matrix cracking (cusps) and fiber–matrix debonding, with cusp height reduction at higher temperatures. Nano-modified specimens showed hole-rich fracture surfaces and robust fiber–matrix adhesion at lower temperatures, confirming nanofiber-mediated toughening. This effect diminished at higher temperatures as nanofibers softened, reducing energy absorption. The results underscore the temperature sensitivity of NBR/PCL nanofibers in enhancing fracture resistance, with peak performance at lower temperatures. These findings provide critical insights for optimizing composite designs for applications exposed to varying thermal conditions, balancing toughening benefits against temperature-induced limitations.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"200 ","pages":"Article 109321"},"PeriodicalIF":8.1000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature-dependent toughening of carbon/epoxy composites using rubbery NBR/PCL nanofibers: Mode I fracture and damage mechanisms\",\"authors\":\"Hesamaldin Saghafi ,&nbsp;Isa Ahmadi ,&nbsp;Ramin Khamedi ,&nbsp;Hamed Saghafi ,&nbsp;Tommaso Maria Brugo ,&nbsp;Emanuele Maccaferri ,&nbsp;Francesco Mongioì ,&nbsp;Andrea Zucchelli\",\"doi\":\"10.1016/j.compositesa.2025.109321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study evaluates the temperature-dependent toughening effect of rubbery NBR/PCL nanofibers in carbon/epoxy composites under mode I loading. Double Cantilever Beam (DCB) tests at six temperatures (−30 °C to 120 °C) measured interlaminar fracture toughness in non-modified and nano-modified laminates. At 30 °C, modified specimens achieved 164 % higher initiation toughness and 394 % higher propagation toughness than non-modified ones, driven by nano-modified interactions that enhanced energy dissipation through plastic deformation and fiber bridging. However, at elevated temperatures (90 °C and 120 °C), toughness declined sharply due to modified matrix softening above the rubber’s glass transition temperature (T<sub>g</sub>) and PCL melting point, impairing crack-bridging efficacy. Fractographic analysis revealed contrasting failure modes: non-modified specimens exhibited matrix cracking (cusps) and fiber–matrix debonding, with cusp height reduction at higher temperatures. Nano-modified specimens showed hole-rich fracture surfaces and robust fiber–matrix adhesion at lower temperatures, confirming nanofiber-mediated toughening. This effect diminished at higher temperatures as nanofibers softened, reducing energy absorption. The results underscore the temperature sensitivity of NBR/PCL nanofibers in enhancing fracture resistance, with peak performance at lower temperatures. These findings provide critical insights for optimizing composite designs for applications exposed to varying thermal conditions, balancing toughening benefits against temperature-induced limitations.</div></div>\",\"PeriodicalId\":282,\"journal\":{\"name\":\"Composites Part A: Applied Science and Manufacturing\",\"volume\":\"200 \",\"pages\":\"Article 109321\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part A: Applied Science and Manufacturing\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359835X25006153\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25006153","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了橡胶NBR/PCL纳米纤维在碳/环氧复合材料中在I型载荷下的温度依赖性增韧效果。双悬臂梁(DCB)测试在六种温度下(- 30°C至120°C)测量未改性和纳米改性层压板的层间断裂韧性。在30°C时,由于纳米修饰的相互作用增强了塑性变形和纤维桥接的能量耗散,改性试样的起始韧性比未改性试样高164%,扩展韧性比未改性试样高394%。然而,在高温下(90°C和120°C),由于改性基体软化高于橡胶的玻璃化转变温度(Tg)和PCL熔点,韧性急剧下降,削弱了裂缝弥合效果。断口分析揭示了不同的破坏模式:未改性的试样表现为基体开裂(尖头)和纤维基体脱粘,尖头高度在高温下降低。纳米改性的样品在低温下显示出富含孔洞的断口表面和强大的纤维基质粘附,证实了纳米纤维介导的增韧。这种效应在高温下减弱,因为纳米纤维软化了,减少了能量吸收。结果表明,NBR/PCL纳米纤维在增强抗断裂性能方面具有温度敏感性,在较低温度下性能达到峰值。这些发现为优化不同热条件下的复合材料设计、平衡增韧效益和温度限制提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temperature-dependent toughening of carbon/epoxy composites using rubbery NBR/PCL nanofibers: Mode I fracture and damage mechanisms
This study evaluates the temperature-dependent toughening effect of rubbery NBR/PCL nanofibers in carbon/epoxy composites under mode I loading. Double Cantilever Beam (DCB) tests at six temperatures (−30 °C to 120 °C) measured interlaminar fracture toughness in non-modified and nano-modified laminates. At 30 °C, modified specimens achieved 164 % higher initiation toughness and 394 % higher propagation toughness than non-modified ones, driven by nano-modified interactions that enhanced energy dissipation through plastic deformation and fiber bridging. However, at elevated temperatures (90 °C and 120 °C), toughness declined sharply due to modified matrix softening above the rubber’s glass transition temperature (Tg) and PCL melting point, impairing crack-bridging efficacy. Fractographic analysis revealed contrasting failure modes: non-modified specimens exhibited matrix cracking (cusps) and fiber–matrix debonding, with cusp height reduction at higher temperatures. Nano-modified specimens showed hole-rich fracture surfaces and robust fiber–matrix adhesion at lower temperatures, confirming nanofiber-mediated toughening. This effect diminished at higher temperatures as nanofibers softened, reducing energy absorption. The results underscore the temperature sensitivity of NBR/PCL nanofibers in enhancing fracture resistance, with peak performance at lower temperatures. These findings provide critical insights for optimizing composite designs for applications exposed to varying thermal conditions, balancing toughening benefits against temperature-induced limitations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信