O. Bondarenko, O. Pakhomova, Włodzimierz Lewoniewski
{"title":"The didactic potential of virtual information educational environment as a tool of geography students training","authors":"O. Bondarenko, O. Pakhomova, Włodzimierz Lewoniewski","doi":"10.31812/123456789/3761","DOIUrl":"https://doi.org/10.31812/123456789/3761","url":null,"abstract":"The article clarifies the concept of “virtual information educational environment” (VIEE) and examines the researchers’ views on its meaning exposed in the scientific literature. The article determines the didactic potential of the virtual information educational environment for the geography students training based on the analysis of the authors’ experience of blended learning by means of the Google Classroom. It also specifies the features (immersion, interactivity, and dynamism, sense of presence, continuity, and causality). The authors highlighted the advantages of virtual information educational environment implementation, such as: increase of the efficiency of the educational process by intensifying the process of cognition and interpersonal interactive communication; continuous access to multimedia content both in Google Classroom and beyond; saving student time due to the absence of necessity to work out the training material “manually”; availability of virtual pages of the virtual class; individualization of the educational process; formation of informational culture of the geography students; and more productive learning of the educational material at the expense of IT educational facilities. Among the disadvantages the article mentions low level of computerization, insignificant quantity and low quality of software products, underestimation of the role of VIЕЕ in the professional training of geography students, and the lack of economic stimuli, etc.","PeriodicalId":274384,"journal":{"name":"International Workshop on Augmented Reality in Education","volume":"16 7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131090601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Kiv, M. Shyshkina, S. Semerikov, A. Striuk, Yuliia V. Yechkalo
{"title":"AREdu 2019 - How augmented reality transforms to augmented learning","authors":"A. Kiv, M. Shyshkina, S. Semerikov, A. Striuk, Yuliia V. Yechkalo","doi":"10.31812/123456789/3676","DOIUrl":"https://doi.org/10.31812/123456789/3676","url":null,"abstract":"This is an introductory text to a collection of papers from the AREdu 2019: The 2nd International Workshop on Augmented Reality in Education, which was held in Kryvyi Rih, Ukraine, on the March 22, 2019. It consists of short introduction, papers review and some observations about the event and its future.","PeriodicalId":274384,"journal":{"name":"International Workshop on Augmented Reality in Education","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115956150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Kanivets, Irina M. Kanivets, N. Kononets, T. Gorda, E. Shmeltser
{"title":"Development of mobile applications of augmented reality for projects with projection drawings","authors":"O. Kanivets, Irina M. Kanivets, N. Kononets, T. Gorda, E. Shmeltser","doi":"10.31812/123456789/3745","DOIUrl":"https://doi.org/10.31812/123456789/3745","url":null,"abstract":"We conducted an analysis of the learning aids used in the study of general technical disciplines. This allowed us to draw an analogy between physical and virtual models and justify the development of a mobile application to perform tasks on a projection drawing. They showed a technique for creating mobile applications for augmented reality. The main stages of the development of an augmented reality application are shown: the development of virtual models, the establishment of the Unity3D game engine, the development of a mobile application, testing and demonstration of work. Particular attention is paid to the use of scripts to rotate and move virtual models. The in-house development of the augmented reality mobile application for accomplishing tasks on a projection drawing is presented. The created mobile application reads, recognizes marker drawings and displays the virtual model of the product on the screen of the mobile device. It has been established that the augmented reality program developed by the team of authors as a mobile pedagogical software can be used to perform tasks both with independent work of students and with the organization of classroom activities in higher education institutions.","PeriodicalId":274384,"journal":{"name":"International Workshop on Augmented Reality in Education","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117258817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using interactive technologies to study the evolution of stars in astronomy classes","authors":"S. Malchenko, Davyd V. Mykoliuk, A. Kiv","doi":"10.31812/123456789/3752","DOIUrl":"https://doi.org/10.31812/123456789/3752","url":null,"abstract":"In astrophysics, a significant role is played by observations. During astronomy classes in the absence of surveillance tools interactive programmes such as an interactive programme for space objects simulation can be used as Universe Sandbox2. The aim of this work is to implement interactive programmes for effective astronomy teaching, understanding material and increasing cognitive interest. We observe the evolution of stars while using Universe Sandbox2 during the study of the topic “Evolution of stars”. Using this programme students have an opportunity to get acquainted with the existence of stars with different masses, their differences, to observe changes in the physical characteristics of stars such as: mass, temperature, speed velocity, luminosity, radius and gravity. It will help to develop the ability to analyze, to compare, to form scientific worldview, to develop the attraction for research, to raise the interest for studying astronomy.","PeriodicalId":274384,"journal":{"name":"International Workshop on Augmented Reality in Education","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125920426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prospects of using the augmented reality application in STEM-based Mathematics teaching","authors":"T. Kramarenko, O. Pylypenko, V. Zaselskiy","doi":"10.31812/EDUCDIM.V53I1.3843","DOIUrl":"https://doi.org/10.31812/EDUCDIM.V53I1.3843","url":null,"abstract":"The purpose of the study is improving the methodology of teaching Mathematics using cloud technologies and augmented reality, analyzing the peculiarities of the augmented reality technology implementing in the educational process. Attention is paid to the study of adaptation of Augmented Reality technology implementing in teaching mathematical disciplines for students. The task of the study is to identify the problems requiring theoretical and experimental solutions. The object of the study is the process of teaching Mathematics in higher and secondary education institutions. The subject of the study is augmented reality technology in STEM-based Mathematics learning. In the result of the study an overview of modern augmented reality tools and their application practices was carried out. The peculiarities of the mobile application 3D Calculator with Augmented reality of Dynamic Mathematics GeoGebra system usage in Mathematics teaching are revealed.","PeriodicalId":274384,"journal":{"name":"International Workshop on Augmented Reality in Education","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128705015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Shapovalov, Yevhenii B. Shapovalov, Z. Bilyk, A. Megalinska, I. Muzyka
{"title":"The Google Lens analyzing quality: an analysis of the possibility to use in the educational process","authors":"V. Shapovalov, Yevhenii B. Shapovalov, Z. Bilyk, A. Megalinska, I. Muzyka","doi":"10.31812/EDUCDIM.V53I1.3844","DOIUrl":"https://doi.org/10.31812/EDUCDIM.V53I1.3844","url":null,"abstract":"Biology is a fairly complicated initial subject because it involves knowledge of biodiversity. Google Lens is a unique, mobile software that allows you to recognition species and genus of the plant student looking for. The article devoted to the analysis of the efficiency of the functioning of the Google Lens related to botanical objects. In order to perform the analysis, botanical objects were classified by type of the plant (grass, tree, bush) and by part of the plant (stem, flower, fruit) which is represented on the analyzed photo. It was shown that Google Lens correctly identified plant species in 92.6% cases. This is a quite high result, which allows recommending this program using during the teaching. The greatest accuracy of Google Lens was observed under analyzing trees and plants stems. The worst accuracy was characterized to Google Lens results of fruits and stems of the bushes recognizing. However, the accuracy was still high and Google Lens can help to provide the researches even in those cases. Google Lens wasn’t able to analyze the local endemic Ukrainian flora. It has been shown that the recognition efficiency depends more on the resolution of the photo than on the physical characteristics of the camera through which they are made. In the article shown the possibility of using the Google Lens in the educational process is a simple way to include principles of STEM-education and “New Ukrainian school” in classes.","PeriodicalId":274384,"journal":{"name":"International Workshop on Augmented Reality in Education","volume":"506 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132352389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Augmented reality as a tool for open science platform by research collaboration in virtual teams","authors":"M. Shyshkina, M. Marienko","doi":"10.31812/EDUCDIM.V53I1.3838","DOIUrl":"https://doi.org/10.31812/EDUCDIM.V53I1.3838","url":null,"abstract":"The provision of open science is defined as a general policy aimed at overcoming the barriers that hinder the implementation of the European Research Area (ERA). An open science foundation seeks to capture all the elements needed for the functioning of ERA: research data, scientific instruments, ICT services (connections, calculations, platforms, and specific studies such as portals). Managing shared resources for the community of scholars maximizes the benefits to society. In the field of digital infrastructure, this has already demonstrated great benefits. It is expected that applying this principle to an open science process will improve management by funding organizations in collaboration with stakeholders through mechanisms such as public consultation. This will increase the perception of joint ownership of the infrastructure. It will also create clear and non-discriminatory access rules, along with a sense of joint ownership that stimulates a higher level of participation, collaboration and social reciprocity. The article deals with the concept of open science. The concept of the European cloud of open science and its structure are presented. According to the study, it has been shown that the structure of the cloud of open science includes an augmented reality as an open-science platform. An example of the practical application of this tool is the general description of MaxWhere, developed by Hungarian scientists, and is a platform of aggregates of individual 3D spaces.","PeriodicalId":274384,"journal":{"name":"International Workshop on Augmented Reality in Education","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122414613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulation technologies of virtual reality usage in the training of future ship navigators","authors":"M. Lvov, H. Popova","doi":"10.31812/EDUCDIM.V53I1.3840","DOIUrl":"https://doi.org/10.31812/EDUCDIM.V53I1.3840","url":null,"abstract":"Research goal: the research is aimed at the theoretical substantiation of the application of virtual reality technology simulators and their features in higher maritime educational institutions. Research objectives: to determine the role and place of simulation technology in the educational process in the training of future ship navigators in order to form the professional competence of navigation. Object of research: professional training of future ship navigators in higher maritime educational institutions. Subject of research: simulation technologies of virtual reality as a component of the educational process at higher educational maritime establishments.\u0000Research methods used: theoretical methods containing the analysis of scientific sources; empirical methods involving study and observation of the educational process. Research results: the analysis of scientific publications allows to define the concept of virtual reality simulators, their application in the training of future navigators, their use for assessing the acquired professional competence of navigation. Main conclusions: introduction of simulation technologies of virtual reality in the educational process in higher maritime educational institutions increases the efficiency of education, promotes the development of professional thinking of students, enhances the quality of professional competence development.","PeriodicalId":274384,"journal":{"name":"International Workshop on Augmented Reality in Education","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130342180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Shamonia, O. Semenikhina, V. Proshkin, O. Lebid, S. Kharchenko, O. Lytvyn
{"title":"Using the Proteus virtual environment to train future IT professionals","authors":"V. Shamonia, O. Semenikhina, V. Proshkin, O. Lebid, S. Kharchenko, O. Lytvyn","doi":"10.31812/EDUCDIM.V53I1.3842","DOIUrl":"https://doi.org/10.31812/EDUCDIM.V53I1.3842","url":null,"abstract":"Based on literature review it was established that the use of augmented reality as an innovative technology of student training occurs in following directions: 3D image rendering; recognition and marking of real objects; interaction of a virtual object with a person in real time. The main advantages of using AR and VR in the educational process are highlighted: clarity, ability to simulate processes and phenomena, integration of educational disciplines, building an open education system, increasing motivation for learning, etc. It has been found that in the field of physical process modelling the Proteus Physics Laboratory is a popular example of augmented reality. Using the Proteus environment allows to visualize the functioning of the functional nodes of the computing system at the micro level. This is especially important for programming systems with limited resources, such as microcontrollers in the process of training future IT professionals. Experiment took place at Borys Grinchenko Kyiv University and Sumy State Pedagogical University named after A. S. Makarenko with students majoring in Computer Science (field of knowledge is Secondary Education (Informatics)). It was found that computer modelling has a positive effect on mastering the basics of microelectronics. The ways of further scientific researches for grounding, development and experimental verification of forms, methods and augmented reality, and can be used in the professional training of future IT specialists are outlined in the article.","PeriodicalId":274384,"journal":{"name":"International Workshop on Augmented Reality in Education","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125410969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stages of Conceptualization and Formalization in the Design of the Model of the Neuro-Fuzzy Expert System of Professional Selection of Pupils","authors":"B. Buyak, I. Tsidylo, V. Repskyi, V. Lyalyuk","doi":"10.31812/123456789/2669","DOIUrl":"https://doi.org/10.31812/123456789/2669","url":null,"abstract":"The article describes the problem of designing a neuro-fuzzy expert system of professional selection at the stages of conceptualization and formalization, which involves the definition of concepts, relationships and management mechanisms necessary to describe the solution of problems in the chosen subject field. The structural model of the decision making system for determining the professional selection of students for training in IT specialties is substantiated. Three subsystems are proposed as structural components for studying: psychological peculiarities, personal qualities, factual knowledge, abilities and skills of students. The quality of the system’s operation is determined by the use of various techniques for acquiring knowledge on the basis of which the knowledge base of the neuro-fuzzy system and the combination of the use of fuzzy and stochastic data will be formed.","PeriodicalId":274384,"journal":{"name":"International Workshop on Augmented Reality in Education","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129367003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}