Chem最新文献

筛选
英文 中文
Enantioselective desymmetrization and parallel kinetic resolution of cyclopropanes via C–C activation: Synthesis of chiral β-lactams 通过 C-C 活化实现环丙烷的对映选择性去对称化和平行动力学解析:手性 β-内酰胺的合成
IF 19.1 1区 化学
Chem Pub Date : 2024-11-14 DOI: 10.1016/j.chempr.2024.08.005
Hao Wu , Yiyao Wang , Shiyuan Sui , Gongming Chen , Lei Wang , Jiaxin Yang , Junbiao Chang , Dachang Bai
{"title":"Enantioselective desymmetrization and parallel kinetic resolution of cyclopropanes via C–C activation: Synthesis of chiral β-lactams","authors":"Hao Wu ,&nbsp;Yiyao Wang ,&nbsp;Shiyuan Sui ,&nbsp;Gongming Chen ,&nbsp;Lei Wang ,&nbsp;Jiaxin Yang ,&nbsp;Junbiao Chang ,&nbsp;Dachang Bai","doi":"10.1016/j.chempr.2024.08.005","DOIUrl":"10.1016/j.chempr.2024.08.005","url":null,"abstract":"<div><div>β-Lactams are privileged and appealing motifs in medicinal chemistry. Herein, we report enantioselective desymmetrization and parallel kinetic resolution of aminocyclopropanes for the synthesis of chiral β-lactams through Rh(I)-catalyzed asymmetric C–C bond activation. The chiral Rh(I) catalyzed C–C bond cleavage of aminocyclopropanes first and then underwent β-hydride elimination to generate π-allylic hydridorhodium(III) intermediates, which could be trapped by tethered alkyne units, and gave various strained chiral β-lactams with excellent <em>regio</em>- and enantioselectivity (90%–99% ee). Moreover, parallel kinetic resolution was realized when using unsymmetrical aminocyclopropanes with pre-existing C2-stereocenters through C–C bond activation, delivering two types of β-lactams in one pot with excellent enantiomeric excesses. Notably, these systems achieve complete atom and step economy. The obtained enantioenriched β-lactams exhibit the capability to undergo a variety of stereospecific transformations. Theoretical calculations reveal the origin of enantioselectivity and support the alkyne unit insertion to allylic Rh(III) –C bond mechanisms.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 11","pages":"Pages 3503-3516"},"PeriodicalIF":19.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying zinc and manganese reduction potentials in organic solvents 量化锌和锰在有机溶剂中的还原电位
IF 19.1 1区 化学
Chem Pub Date : 2024-11-14 DOI: 10.1016/j.chempr.2024.10.015
Sagnik Chakrabarti , Liviu M. Mirica
{"title":"Quantifying zinc and manganese reduction potentials in organic solvents","authors":"Sagnik Chakrabarti ,&nbsp;Liviu M. Mirica","doi":"10.1016/j.chempr.2024.10.015","DOIUrl":"10.1016/j.chempr.2024.10.015","url":null,"abstract":"<div><div>Zinc and manganese are the reductants of choice for nickel-catalyzed cross-electrophile coupling (XEC), but their exact redox potentials are unknown in organic solvents. In a recent report from Stahl and colleagues in <em>Nature Chemistry</em>, these potentials have been measured for the first time and their implications on model XEC reactions have been discussed.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 11","pages":"Pages 3273-3275"},"PeriodicalIF":19.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inherently chiral resorcinarene cavitands through ionic catalyst-controlled cross-coupling 通过离子催化剂控制的交叉偶联获得固有手性的间苯二酚空穴剂
IF 19.1 1区 化学
Chem Pub Date : 2024-11-14 DOI: 10.1016/j.chempr.2024.06.012
Mingfeng Li , Clement Kim Soon Ho , Ivan Keng Wee On , Vincent Gandon , Ye Zhu
{"title":"Inherently chiral resorcinarene cavitands through ionic catalyst-controlled cross-coupling","authors":"Mingfeng Li ,&nbsp;Clement Kim Soon Ho ,&nbsp;Ivan Keng Wee On ,&nbsp;Vincent Gandon ,&nbsp;Ye Zhu","doi":"10.1016/j.chempr.2024.06.012","DOIUrl":"10.1016/j.chempr.2024.06.012","url":null,"abstract":"<div><div>Cavitands have emerged as privileged architectures in supramolecular chemistry. Nonetheless, achieving structural diversity and tunability through heterofunctionalization along the rims of macrocycles has remained a formidable challenge. As a rudimental example, stepwise conversion of <em>C</em><sub>4v</sub>-symmetric scaffolds to inherently chiral ABCD patterns is synthetically impractical owing to the low theoretical yields (0.8%) and the need for chromatographic enantioseparation.</div><div>Herein, we report a catalytic desymmetrization strategy to access inherently chiral cavitands. Through engineering ionic chiral palladium catalysts, diverse functionalities, including aryl, alkenyl, alkynyl, and amino groups, can be installed on the large rims with high site- and stereoselectivity. An adaptable stepwise protocol has been established to furnish designer ABCD-type cavitands in accordance with the choreography of coupling partners. Experimental and computational studies reveal synergistic electrostatic steering and electrostatic catalysis by the ionic catalyst–substrate interactions.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 11","pages":"Pages 3323-3341"},"PeriodicalIF":19.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141546260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the road to isolable geminal carbodications 通往可分离的宝石碳化物之路
IF 19.1 1区 化学
Chem Pub Date : 2024-11-14 DOI: 10.1016/j.chempr.2024.09.008
Yiwei Gong , Jan Langwald , Florian F. Mulks
{"title":"On the road to isolable geminal carbodications","authors":"Yiwei Gong ,&nbsp;Jan Langwald ,&nbsp;Florian F. Mulks","doi":"10.1016/j.chempr.2024.09.008","DOIUrl":"10.1016/j.chempr.2024.09.008","url":null,"abstract":"<div><div>Recent advances in the isolation of masked <em>gem</em>-carbodications have shown that such species may be more accessible than we thought. This perspective article summarizes the milestones of the last 140 years of research and aims to point the way toward the isolation of species containing true four-valence-electron carbon. Currently, strong mesomeric donation or coordination by donor ligands is used to stabilize such dications. Achieving true localization of both charges on a single atom will require smart combinations of inductive donation, hyperconjugation, and steric hindrance.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 11","pages":"Pages 3294-3308"},"PeriodicalIF":19.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New light on proton transfer: Spectral and kinetic signature of a transient Eigen complex 质子转移的新发现:瞬态特征复合体的光谱和动力学特征
IF 19.1 1区 化学
Chem Pub Date : 2024-11-14 DOI: 10.1016/j.chempr.2024.10.017
Niklas Sülzner
{"title":"New light on proton transfer: Spectral and kinetic signature of a transient Eigen complex","authors":"Niklas Sülzner","doi":"10.1016/j.chempr.2024.10.017","DOIUrl":"10.1016/j.chempr.2024.10.017","url":null,"abstract":"<div><div>Despite the long-lasting research on proton transfer as a fundamental chemical reaction, not all details regarding its precise mechanism have been revealed. Particularly, a complete spectroscopic and kinetic characterization of all intermediates remains challenging. In the September issue of <em>Cell Reports Physical Science</em>, Lee et al. identify a transient Eigen complex and determine the molecularity of each elementary step.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 11","pages":"Pages 3276-3278"},"PeriodicalIF":19.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-activated energy release cascade from anthracene-based solid-state molecular solar thermal energy storage systems 蒽基固态分子太阳能热储存系统的自激活能量释放级联
IF 19.1 1区 化学
Chem Pub Date : 2024-11-14 DOI: 10.1016/j.chempr.2024.06.033
Subhayan Chakraborty , Han P.Q. Nguyen , Junichi Usuba , Ji Yong Choi , Zhenhuan Sun , Cijil Raju , Gustavo Sigelmann , Qianfeng Qiu , Sungwon Cho , Stephanie M. Tenney , Katherine E. Shulenberger , Klaus Schmidt-Rohr , Jihye Park , Grace G.D. Han
{"title":"Self-activated energy release cascade from anthracene-based solid-state molecular solar thermal energy storage systems","authors":"Subhayan Chakraborty ,&nbsp;Han P.Q. Nguyen ,&nbsp;Junichi Usuba ,&nbsp;Ji Yong Choi ,&nbsp;Zhenhuan Sun ,&nbsp;Cijil Raju ,&nbsp;Gustavo Sigelmann ,&nbsp;Qianfeng Qiu ,&nbsp;Sungwon Cho ,&nbsp;Stephanie M. Tenney ,&nbsp;Katherine E. Shulenberger ,&nbsp;Klaus Schmidt-Rohr ,&nbsp;Jihye Park ,&nbsp;Grace G.D. Han","doi":"10.1016/j.chempr.2024.06.033","DOIUrl":"10.1016/j.chempr.2024.06.033","url":null,"abstract":"<div><div>We introduce donor-acceptor substituted anthracenes as effective molecular solar thermal energy storage compounds that operate exclusively in the solid state. The donor-acceptor anthracenes undergo a visible light-induced [4+4] cycloaddition reaction, producing metastable cycloadducts—dianthracenes with quaternary carbons—and storing photon energy. The triggered cycloreversion of dianthracenes to anthracenes discharges the stored energy as heat in the order of 100 kJ/mol (200 J/g). The series of compounds displays remarkable self-heating, or cascading heat release, upon the initial triggering. Such self-activated energy release is enabled by the large energy storage in dianthracenes, low activation energy for their thermal reversion, and effective heat transfer to unreacted molecules in the solid state. This process mirroring the self-ignition of fossil fuels opens up opportunities to use dianthracenes as effective and renewable solid-state fuels that can release energy rapidly and completely upon initial activation.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 11","pages":"Pages 3309-3322"},"PeriodicalIF":19.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141746613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A skeletally diverse library of bioactive natural-product-like compounds enabled by late-stage P450-catalyzed oxyfunctionalization 通过后期 P450 催化氧官能化作用,建立一个骨架多样化的生物活性天然产物类化合物库
IF 19.1 1区 化学
Chem Pub Date : 2024-11-14 DOI: 10.1016/j.chempr.2024.08.003
Andrew R. Bortz , John M. Bennett , Rudi Fasan
{"title":"A skeletally diverse library of bioactive natural-product-like compounds enabled by late-stage P450-catalyzed oxyfunctionalization","authors":"Andrew R. Bortz ,&nbsp;John M. Bennett ,&nbsp;Rudi Fasan","doi":"10.1016/j.chempr.2024.08.003","DOIUrl":"10.1016/j.chempr.2024.08.003","url":null,"abstract":"<div><div>Natural products have historically represented a major source of therapeutics and small-molecule probes for interrogating biological systems. Here, we describe the design and implementation of P450-mediated chemoenzymatic diversity-oriented synthesis (CeDOS), a strategy in which selective, regiodivergent P450-catalyzed oxyfunctionalizations are leveraged as key steps for enabling the skeletal rearrangement and diversification of a parent compound. Using this strategy and plant-derived parthenolide as the parent molecule, a structurally diverse library of over 50 unprecedented natural-product-like scaffolds was generated via divergent chemoenzymatic routes. Importantly, several members of this CeDOS library were found to exhibit notable cytotoxicity against human cancer cells as well as diversified anticancer activity profiles. This work demonstrates the power of CeDOS as a strategy for directing the construction and discovery of novel bioactive molecules, and it offers a blueprint for the broader application of this approach toward the creation and exploration of natural-product-like chemical libraries.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 11","pages":"Pages 3488-3502"},"PeriodicalIF":19.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A high-throughput workflow to analyze sequence-conformation relationships and explore hydrophobic patterning in disordered peptoids 分析序列构象关系和探索无序蛋白胨疏水模式的高通量工作流程
IF 19.1 1区 化学
Chem Pub Date : 2024-11-14 DOI: 10.1016/j.chempr.2024.07.025
Erin C. Day , Supraja S. Chittari , Keila C. Cunha , Roy J. Zhao , James N. Dodds , Delaney C. Davis , Erin S. Baker , Rebecca B. Berlow , Joan-Emma Shea , Rishikesh U. Kulkarni , Abigail S. Knight
{"title":"A high-throughput workflow to analyze sequence-conformation relationships and explore hydrophobic patterning in disordered peptoids","authors":"Erin C. Day ,&nbsp;Supraja S. Chittari ,&nbsp;Keila C. Cunha ,&nbsp;Roy J. Zhao ,&nbsp;James N. Dodds ,&nbsp;Delaney C. Davis ,&nbsp;Erin S. Baker ,&nbsp;Rebecca B. Berlow ,&nbsp;Joan-Emma Shea ,&nbsp;Rishikesh U. Kulkarni ,&nbsp;Abigail S. Knight","doi":"10.1016/j.chempr.2024.07.025","DOIUrl":"10.1016/j.chempr.2024.07.025","url":null,"abstract":"<div><div>Understanding how a macromolecule’s primary sequence governs its conformational landscape is crucial for elucidating its function, yet these design principles are still emerging for macromolecules with intrinsic disorder. Herein, we introduce a high-throughput workflow that implements a practical colorimetric conformational assay, introduces a semi-automated sequencing protocol using matrix-assisted laser desorption/ionization and tandem mass spectrometry (MALDI-MS/MS), and develops a generalizable sequence-structure algorithm. Using a model system of 20mer peptidomimetics containing polar glycine and hydrophobic <em>N</em>-butylglycine residues, we identified nine classifications of conformational disorder and isolated 122 unique sequences across varied compositions and conformations. Conformational distributions of three compositionally identical library sequences were corroborated through atomistic simulations and ion mobility spectrometry coupled with liquid chromatography. A data-driven strategy was developed using existing sequence variables and data-derived “motifs” to inform a machine-learning algorithm toward conformation prediction. This multifaceted approach enhances our understanding of sequence-conformation relationships and offers a powerful tool for accelerating the discovery of materials with conformational control.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 11","pages":"Pages 3444-3458"},"PeriodicalIF":19.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanocellulose: New horizons in organic chemistry and beyond 纳米纤维素:有机化学及其他领域的新视野
IF 19.1 1区 化学
Chem Pub Date : 2024-11-14 DOI: 10.1016/j.chempr.2024.09.007
Sayad Doobary , Varvara Apostolopoulou-Kalkavoura , Aji P. Mathew , Berit Olofsson
{"title":"Nanocellulose: New horizons in organic chemistry and beyond","authors":"Sayad Doobary ,&nbsp;Varvara Apostolopoulou-Kalkavoura ,&nbsp;Aji P. Mathew ,&nbsp;Berit Olofsson","doi":"10.1016/j.chempr.2024.09.007","DOIUrl":"10.1016/j.chempr.2024.09.007","url":null,"abstract":"<div><div>The study of different forms of nanocellulose is a fast-growing field with many advantages. As a biobased polymer, it holds strong promise to replace petrochemical solid supports that need to be phased out. While there are already a plethora of nanocellulose applications, e.g., in the fields of material science, engineering, and water treatment, there is a surprising lack of reports concerning their applications in catalysis and organic chemistry. A crucial property of nanocellulose is its well-defined surface structure, which enables surface modifications to reach useful solid-supported catalysts and reagents. In this perspective, we explore the use of unmodified and modified variants of nanocellulose in organic chemistry. We further propose that the use of mechanochemistry could be a future application to increase the activity and eliminate the requirement for aqueous media due to nanocellulose’s dispersion issues.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 11","pages":"Pages 3279-3293"},"PeriodicalIF":19.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deuteration of arenes in pharmaceuticals via photoinduced solvated electrons 通过光诱导溶电子使药物中的炔烃发生氘化反应
IF 19.1 1区 化学
Chem Pub Date : 2024-11-14 DOI: 10.1016/j.chempr.2024.06.029
Yi Tao , Cuihua Jin , Chuanwang Liu , Jiawei Bu , Ling Yue , Xipan Li , Kangjiang Liang , Chengfeng Xia
{"title":"Deuteration of arenes in pharmaceuticals via photoinduced solvated electrons","authors":"Yi Tao ,&nbsp;Cuihua Jin ,&nbsp;Chuanwang Liu ,&nbsp;Jiawei Bu ,&nbsp;Ling Yue ,&nbsp;Xipan Li ,&nbsp;Kangjiang Liang ,&nbsp;Chengfeng Xia","doi":"10.1016/j.chempr.2024.06.029","DOIUrl":"10.1016/j.chempr.2024.06.029","url":null,"abstract":"<div><div><span>Deuterium<span><span> incorporation into pharmaceutical molecules has been recognized as having a positive impact on drug efficacy and safety, allowing improvements in pharmacokinetic and/or toxicity profiles. Due to the high chemical inertness of arenes toward the </span>hydrogen atom<span> and the electron transfer processes, the visible light-induced direct deuteration of aromatic C(sp</span></span></span><sup>2</sup><span><span>)–H bonds via hydrogen isotope<span> exchange remains unexplored. Herein, we report a photochemical deuteration protocol for efficient incorporation of deuterium into arenes in a single step, tolerating manifold functionalities in pharmaceutical compounds. Mechanistic studies provided evidence that </span></span>solvated electrons were generated by light illumination with a phenolate-type photocatalyst and were involved in deuterium incorporation. This protocol was successfully applied to the late-stage deuteration of pharmaceuticals by photochemical aromatic H/D exchange on arenes.</span></div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 11","pages":"Pages 3374-3384"},"PeriodicalIF":19.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信