{"title":"Reducing CRISPR-Cas9 off-target effects by optically controlled chemical modifications of guide RNA","authors":"Qianqian Qi , Xingyu Liu , Wei Xiong , Kaisong Zhang , Wei Shen , Yuanyuan Zhang , Xinyan Xu , Cheng Zhong , Yan Zhang , Tian Tian , Xiang Zhou","doi":"10.1016/j.chembiol.2024.09.006","DOIUrl":"10.1016/j.chembiol.2024.09.006","url":null,"abstract":"<div><div>A photocatalytic click chemistry approach, offering a significant advancement over conventional methods in RNA function modulation is described. This innovative method, utilizing light-activated small molecules, provides a high level of precision and control in RNA regulation, particularly effective in intricate cellular processes. By applying this strategy to CRISPR-Cas9 gene editing, we demonstrate its effectiveness in enhancing gene editing specificity and markedly reducing off-target effects. Our approach employs a vinyl ether modification in RNA, which activated under visible light with a phenanthrenequinone derivative, creating a CRISPR-OFF switch that precisely regulates CRISPR system activity. This method not only represents an advancement in genomic interventions but also offers broad applications in gene regulation, paving the way for safer and more reliable gene editing in therapeutic genomics.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 10","pages":"Pages 1839-1851.e8"},"PeriodicalIF":6.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher J. Good , Casey E. Butrico , Madeline E. Colley , Lauren N. Emmerson , Katherine N. Gibson-Corley , James E. Cassat , Jeffrey M. Spraggins , Richard M. Caprioli
{"title":"Uncovering lipid dynamics in Staphylococcus aureus osteomyelitis using multimodal imaging mass spectrometry","authors":"Christopher J. Good , Casey E. Butrico , Madeline E. Colley , Lauren N. Emmerson , Katherine N. Gibson-Corley , James E. Cassat , Jeffrey M. Spraggins , Richard M. Caprioli","doi":"10.1016/j.chembiol.2024.09.005","DOIUrl":"10.1016/j.chembiol.2024.09.005","url":null,"abstract":"<div><div>Osteomyelitis occurs when <em>Staphylococcus aureus</em> invades the bone microenvironment, resulting in a bone marrow abscess with a spatially defined architecture of cells and biomolecules. Imaging mass spectrometry and microscopy are tools that can be employed to interrogate the lipidome of <em>S. aureus</em>-infected murine femurs and reveal metabolic and signaling consequences of infection. Here, nearly 250 lipids were spatially mapped to healthy and infection-associated morphological features throughout the femur, establishing composition profiles for tissue types. Ether lipids and arachidonoyl lipids were altered between cells and tissue structures in abscesses, suggesting their roles in abscess formation and inflammatory signaling. Sterols, triglycerides, bis(monoacylglycero)phosphates, and gangliosides possessed ring-like distributions throughout the abscess, suggesting a hypothesized dysregulation of lipid metabolism in a population of cells that cannot be discerned with traditional microscopy. These data provide insight into the signaling function and metabolism of cells in the fibrotic border of abscesses, likely characteristic of lipid-laden macrophages.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 10","pages":"Pages 1852-1868.e5"},"PeriodicalIF":6.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inviting new connections with science with public art in Philadelphia","authors":"Sarah J. McAnulty","doi":"10.1016/j.chembiol.2024.07.014","DOIUrl":"10.1016/j.chembiol.2024.07.014","url":null,"abstract":"<div><div>In this Stories piece, Sarah J. McAnulty, the executive director of Skype a Scientist and an assistant research professor at the University of Connecticut, discusses the importance of scientists connecting with their local communities to promote trust in and engagement with science.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 10","pages":"Pages 1741-1744"},"PeriodicalIF":6.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancer reprogramming underlies therapeutic utility of a SMARCA2 degrader in SMARCA4 mutant cancer","authors":"Sasikumar Kotagiri, Nicholas Blazanin, Yuanxin Xi, Yanyan Han, Md Qudratullah, Xiaobing Liang, Yawen Wang, Poonam Pandey, Hira Mazhar, Truong Nguyen Lam, Anand Kamal Singh, Jing Wang, Yonathan Lissanu","doi":"10.1016/j.chembiol.2024.09.004","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.09.004","url":null,"abstract":"Genomic studies have identified frequent mutations in subunits of the SWI/SNF (switch/sucrose non-fermenting) chromatin remodeling complex including <em>SMARCA4</em> and <em>ARID1A</em> in non-small cell lung cancer (NSCLC). Genetic evidence indicates that the paralog <em>SMARCA2</em> is synthetic lethal to <em>SMARCA4</em> suggesting SMARCA2 is a valuable therapeutic target. However, the discovery of selective inhibitors of SMARCA2 has been challenging. Here, we utilized structure-activity relationship (SAR) studies to develop YD23, a potent and selective proteolysis targeting chimera (PROTAC) targeting SMARCA2. Mechanistically, we show that SMARCA2 degradation induces reprogramming of the enhancer landscape in <em>SMARCA4</em>-mutant cells with loss of chromatin accessibility at enhancers of genes involved in cell proliferation. Furthermore, we identified YAP/TEADas key partners to SMARCA2 in driving growth of <em>SMARCA4</em>-mutant cells. Finally, we show that YD23 has potent tumor growth inhibitory activity in <em>SMARCA4</em>-mutant xenografts. These findings provide the mechanistic basis for development of SMARCA2 degraders as synthetic lethal therapeutics against <em>SMARCA4</em>-mutant lung cancers.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"9 27 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xu-Hua Mo, Qing-Yin Pu, Tilo Lübken, Gui-Hong Yu, Mert Malay, Paul M. D’Agostino, Tobias A.M. Gulder
{"title":"Discovery and biosynthesis of non-canonical C16-terpenoids from Pseudomonas","authors":"Xu-Hua Mo, Qing-Yin Pu, Tilo Lübken, Gui-Hong Yu, Mert Malay, Paul M. D’Agostino, Tobias A.M. Gulder","doi":"10.1016/j.chembiol.2024.09.002","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.09.002","url":null,"abstract":"Biosynthesis of sodorifen with a unique C<sub>16</sub>-bicyclo[3.2.1]octene framework requires an <em>S</em>-adenosyl methionine-dependent methyltransferase SodC and terpene cyclase SodD. While bioinformatic analyses reveal a wide distribution of the <em>sodCD</em> genes organization in bacteria, their functional diversity remains largely unknown. Herein, two sodorifen-type gene clusters, <em>pcch</em> and <em>pcau</em>, from <em>Pseudomonas</em> sp. are heterologously expressed in <em>Escherichia coli</em>, leading to the discovery of two C<sub>16</sub> terpenoids. Enzymatic synthesis of these compounds is achieved using the two (SodCD-like) pathway-specific enzymes. Enzyme assays using different combinations of methyltransferases and terpene synthases across the <em>pcch</em>, <em>pcau</em>, and <em>sod</em> pathways reveal a unifying biosynthetic mechanism: all three SodC-like enzymes methylate farnesyl pyrophosphate (FPP) with subsequent cyclization to a common intermediate, pre-sodorifen pyrophosphate. Structural diversification of this joint precursor solely occurs by the subsequently acting individual terpene synthases. Our findings expand basic biosynthetic understanding and structural diversity of unusual C<sub>16</sub>-terpenoids.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"35 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lara Kern, Ignacio Mastandrea, Anna Melekhova, Eran Elinav
{"title":"Mechanisms by which microbiome-derived metabolites exert their impacts on neurodegeneration","authors":"Lara Kern, Ignacio Mastandrea, Anna Melekhova, Eran Elinav","doi":"10.1016/j.chembiol.2024.08.014","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.08.014","url":null,"abstract":"Recent developments in microbiome research suggest that the gut microbiome may remotely modulate central and peripheral neuronal processes, ranging from early brain development to age-related changes. Dysbiotic microbiome configurations have been increasingly associated with neurological disorders, such as neurodegeneration, but causal understanding of these associations remains limited. Most mechanisms explaining how the microbiome may induce such remote neuronal effects involve microbially modulated metabolites that influx into the ‘sterile’ host. Some metabolites are able to cross the blood-brain barrier (BBB) to reach the central nervous system, where they can impact a variety of cells and processes. Alternatively, metabolites may directly signal to peripheral nerves to act as neurotransmitters or exert modulatory functions, or impact immune responses, which, in turn, modulate neuronal function and associated disease propensity. Herein, we review the current knowledge highlighting microbiome-modulated metabolite impacts on neuronal disease, while discussing unknowns, controversies and prospects impacting this rapidly evolving research field.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"22 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The next Nobel Prize in chemistry or in physiology or medicine","authors":"Cigall Kadoch, Jason M. Sheltzer, Hang Yin","doi":"10.1016/j.chembiol.2024.08.013","DOIUrl":"10.1016/j.chembiol.2024.08.013","url":null,"abstract":"<div><p>In early October, the Nobel Prizes will honor groundbreaking discoveries. After the anticipated recognition of Katalin Karikó and Drew Weissman in 2023 for the development of RNA modifications that enabled the SARS-CoV-2 mRNA vaccine, we eagerly consider the next topics to be awarded. In the September 30<sup>th</sup> anniversary special issue of <em>Cell Chemical Biology</em>, we ask researchers from a range of backgrounds, what topic do you think deserves the next Nobel Prize in chemistry or in physiology or medicine, and why?</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 9","pages":"Pages 1566-1567"},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kelvin K. Tsao , Shosei Imai , Michael Chang , Saaya Hario , Takuya Terai , Robert E. Campbell
{"title":"The best of both worlds: Chemigenetic fluorescent sensors for biological imaging","authors":"Kelvin K. Tsao , Shosei Imai , Michael Chang , Saaya Hario , Takuya Terai , Robert E. Campbell","doi":"10.1016/j.chembiol.2024.08.002","DOIUrl":"10.1016/j.chembiol.2024.08.002","url":null,"abstract":"<div><p>Synthetic-based fluorescent chemosensors and protein-based fluorescent biosensors are two well-established classes of tools for visualizing and monitoring biological processes in living tissues. Chemigenetic sensors, created using a combination of both synthetic parts and protein parts, are an emerging class of tools that aims to combine the strengths, and overcome the drawbacks, of traditional chemosensors and biosensors. This review will survey the landscape of strategies used for fluorescent chemigenetic sensor design. These strategies include: attachment of synthetic elements to proteins using <em>in vitro</em> protein conjugation; attachment of synthetic elements to proteins using autonomous protein labeling; and translational incorporation of unnatural amino acids.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 9","pages":"Pages 1652-1664"},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tina W. Han , Bede Portz , Richard A. Young , Ann Boija , Isaac A. Klein
{"title":"RNA and condensates: Disease implications and therapeutic opportunities","authors":"Tina W. Han , Bede Portz , Richard A. Young , Ann Boija , Isaac A. Klein","doi":"10.1016/j.chembiol.2024.08.009","DOIUrl":"10.1016/j.chembiol.2024.08.009","url":null,"abstract":"<div><p>Biomolecular condensates are dynamic membraneless organelles that compartmentalize proteins and RNA molecules to regulate key cellular processes. Diverse RNA species exert their effects on the cell by their roles in condensate formation and function. RNA abnormalities such as overexpression, modification, and mislocalization can lead to pathological condensate behaviors that drive various diseases, including cancer, neurological disorders, and infections. Here, we review RNA’s role in condensate biology, describe the mechanisms of RNA-induced condensate dysregulation, note the implications for disease pathogenesis, and discuss novel therapeutic strategies. Emerging approaches to targeting RNA within condensates, including small molecules and RNA-based therapies that leverage the unique properties of condensates, may revolutionize treatment for complex diseases.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 9","pages":"Pages 1593-1609"},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451945624003581/pdfft?md5=b0f6fb8d9ad651a69c2d0a3dc45b2d59&pid=1-s2.0-S2451945624003581-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The physiological and pathological roles of RNA modifications in T cells","authors":"","doi":"10.1016/j.chembiol.2024.06.003","DOIUrl":"10.1016/j.chembiol.2024.06.003","url":null,"abstract":"<div><p><span><span>RNA molecules undergo dynamic chemical modifications in response to various external or cellular stimuli. Some of those modifications have been demonstrated to post-transcriptionally modulate the </span>RNA transcription, localization, stability, translation, and degradation, ultimately tuning the fate decisions and function of </span>mammalian cells, particularly T cells. As a crucial part of adaptive immunity, T cells play fundamental roles in defending against infections and tumor cells. Recent findings have illuminated the importance of RNA modifications in modulating T cell survival, proliferation, differentiation, and functional activities. Therefore, understanding the epi-transcriptomic control of T cell biology enables a potential avenue for manipulating T cell immunity. This review aims to elucidate the physiological and pathological roles of internal RNA modifications in T cell development, differentiation, and functionality drawn from current literature, with the goal of inspiring new insights for future investigations and providing novel prospects for T cell-based immunotherapy.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 9","pages":"Pages 1578-1592"},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}