Cell Chemical Biology最新文献

筛选
英文 中文
Plant synthetic genomics: Big lessons from the little yeast 植物合成基因组学:从小酵母中汲取大教训
IF 6.6 1区 生物学
Cell Chemical Biology Pub Date : 2024-10-17 DOI: 10.1016/j.chembiol.2024.08.001
Hao Ye , Guangyu Luo , Zhenwu Zheng , Xiaofang Li , Jie Cao , Jia Liu , Junbiao Dai
{"title":"Plant synthetic genomics: Big lessons from the little yeast","authors":"Hao Ye ,&nbsp;Guangyu Luo ,&nbsp;Zhenwu Zheng ,&nbsp;Xiaofang Li ,&nbsp;Jie Cao ,&nbsp;Jia Liu ,&nbsp;Junbiao Dai","doi":"10.1016/j.chembiol.2024.08.001","DOIUrl":"10.1016/j.chembiol.2024.08.001","url":null,"abstract":"<div><div>Yeast has been extensively studied and engineered due to its genetic amenability. Projects like Sc2.0 and Sc3.0 have demonstrated the feasibility of constructing synthetic yeast genomes, yielding promising results in both research and industrial applications. In contrast, plant synthetic genomics has faced challenges due to the complexity of plant genomes. However, recent advancements of the project SynMoss, utilizing the model moss plant <em>Physcomitrium patens</em>, offer opportunities for plant synthetic genomics. The shared characteristics between <em>P. patens</em> and yeast, such as high homologous recombination rates and dominant haploid life cycle, enable researchers to manipulate <em>P. patens</em> genomes similarly, opening promising avenues for research and application in plant synthetic biology. In conclusion, harnessing insights from yeast synthetic genomics and applying them to plants, with <em>P. patens</em> as a breakthrough, shows great potential for revolutionizing plant synthetic genomics.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 10","pages":"Pages 1745-1754"},"PeriodicalIF":6.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reducing CRISPR-Cas9 off-target effects by optically controlled chemical modifications of guide RNA 通过光控化学修饰引导 RNA 减少 CRISPR-Cas9 的脱靶效应
IF 6.6 1区 生物学
Cell Chemical Biology Pub Date : 2024-10-17 DOI: 10.1016/j.chembiol.2024.09.006
Qianqian Qi , Xingyu Liu , Wei Xiong , Kaisong Zhang , Wei Shen , Yuanyuan Zhang , Xinyan Xu , Cheng Zhong , Yan Zhang , Tian Tian , Xiang Zhou
{"title":"Reducing CRISPR-Cas9 off-target effects by optically controlled chemical modifications of guide RNA","authors":"Qianqian Qi ,&nbsp;Xingyu Liu ,&nbsp;Wei Xiong ,&nbsp;Kaisong Zhang ,&nbsp;Wei Shen ,&nbsp;Yuanyuan Zhang ,&nbsp;Xinyan Xu ,&nbsp;Cheng Zhong ,&nbsp;Yan Zhang ,&nbsp;Tian Tian ,&nbsp;Xiang Zhou","doi":"10.1016/j.chembiol.2024.09.006","DOIUrl":"10.1016/j.chembiol.2024.09.006","url":null,"abstract":"<div><div>A photocatalytic click chemistry approach, offering a significant advancement over conventional methods in RNA function modulation is described. This innovative method, utilizing light-activated small molecules, provides a high level of precision and control in RNA regulation, particularly effective in intricate cellular processes. By applying this strategy to CRISPR-Cas9 gene editing, we demonstrate its effectiveness in enhancing gene editing specificity and markedly reducing off-target effects. Our approach employs a vinyl ether modification in RNA, which activated under visible light with a phenanthrenequinone derivative, creating a CRISPR-OFF switch that precisely regulates CRISPR system activity. This method not only represents an advancement in genomic interventions but also offers broad applications in gene regulation, paving the way for safer and more reliable gene editing in therapeutic genomics.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 10","pages":"Pages 1839-1851.e8"},"PeriodicalIF":6.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncovering lipid dynamics in Staphylococcus aureus osteomyelitis using multimodal imaging mass spectrometry 利用多模态成像质谱法揭示金黄色葡萄球菌骨髓炎的脂质动态变化
IF 6.6 1区 生物学
Cell Chemical Biology Pub Date : 2024-10-17 DOI: 10.1016/j.chembiol.2024.09.005
Christopher J. Good , Casey E. Butrico , Madeline E. Colley , Lauren N. Emmerson , Katherine N. Gibson-Corley , James E. Cassat , Jeffrey M. Spraggins , Richard M. Caprioli
{"title":"Uncovering lipid dynamics in Staphylococcus aureus osteomyelitis using multimodal imaging mass spectrometry","authors":"Christopher J. Good ,&nbsp;Casey E. Butrico ,&nbsp;Madeline E. Colley ,&nbsp;Lauren N. Emmerson ,&nbsp;Katherine N. Gibson-Corley ,&nbsp;James E. Cassat ,&nbsp;Jeffrey M. Spraggins ,&nbsp;Richard M. Caprioli","doi":"10.1016/j.chembiol.2024.09.005","DOIUrl":"10.1016/j.chembiol.2024.09.005","url":null,"abstract":"<div><div>Osteomyelitis occurs when <em>Staphylococcus aureus</em> invades the bone microenvironment, resulting in a bone marrow abscess with a spatially defined architecture of cells and biomolecules. Imaging mass spectrometry and microscopy are tools that can be employed to interrogate the lipidome of <em>S. aureus</em>-infected murine femurs and reveal metabolic and signaling consequences of infection. Here, nearly 250 lipids were spatially mapped to healthy and infection-associated morphological features throughout the femur, establishing composition profiles for tissue types. Ether lipids and arachidonoyl lipids were altered between cells and tissue structures in abscesses, suggesting their roles in abscess formation and inflammatory signaling. Sterols, triglycerides, bis(monoacylglycero)phosphates, and gangliosides possessed ring-like distributions throughout the abscess, suggesting a hypothesized dysregulation of lipid metabolism in a population of cells that cannot be discerned with traditional microscopy. These data provide insight into the signaling function and metabolism of cells in the fibrotic border of abscesses, likely characteristic of lipid-laden macrophages.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 10","pages":"Pages 1852-1868.e5"},"PeriodicalIF":6.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inviting new connections with science with public art in Philadelphia 费城公共艺术吸引人们与科学建立新联系
IF 6.6 1区 生物学
Cell Chemical Biology Pub Date : 2024-10-17 DOI: 10.1016/j.chembiol.2024.07.014
Sarah J. McAnulty
{"title":"Inviting new connections with science with public art in Philadelphia","authors":"Sarah J. McAnulty","doi":"10.1016/j.chembiol.2024.07.014","DOIUrl":"10.1016/j.chembiol.2024.07.014","url":null,"abstract":"<div><div>In this Stories piece, Sarah J. McAnulty, the executive director of Skype a Scientist and an assistant research professor at the University of Connecticut, discusses the importance of scientists connecting with their local communities to promote trust in and engagement with science.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 10","pages":"Pages 1741-1744"},"PeriodicalIF":6.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The next Nobel Prize in chemistry or in physiology or medicine 下一个诺贝尔化学奖、生理学奖或医学奖
IF 6.6 1区 生物学
Cell Chemical Biology Pub Date : 2024-09-19 DOI: 10.1016/j.chembiol.2024.08.013
Cigall Kadoch, Jason M. Sheltzer, Hang Yin
{"title":"The next Nobel Prize in chemistry or in physiology or medicine","authors":"Cigall Kadoch,&nbsp;Jason M. Sheltzer,&nbsp;Hang Yin","doi":"10.1016/j.chembiol.2024.08.013","DOIUrl":"10.1016/j.chembiol.2024.08.013","url":null,"abstract":"<div><p>In early October, the Nobel Prizes will honor groundbreaking discoveries. After the anticipated recognition of Katalin Karikó and Drew Weissman in 2023 for the development of RNA modifications that enabled the SARS-CoV-2 mRNA vaccine, we eagerly consider the next topics to be awarded. In the September 30<sup>th</sup> anniversary special issue of <em>Cell Chemical Biology</em>, we ask researchers from a range of backgrounds, what topic do you think deserves the next Nobel Prize in chemistry or in physiology or medicine, and why?</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 9","pages":"Pages 1566-1567"},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The best of both worlds: Chemigenetic fluorescent sensors for biological imaging 两全其美:用于生物成像的化学基因荧光传感器
IF 6.6 1区 生物学
Cell Chemical Biology Pub Date : 2024-09-19 DOI: 10.1016/j.chembiol.2024.08.002
Kelvin K. Tsao , Shosei Imai , Michael Chang , Saaya Hario , Takuya Terai , Robert E. Campbell
{"title":"The best of both worlds: Chemigenetic fluorescent sensors for biological imaging","authors":"Kelvin K. Tsao ,&nbsp;Shosei Imai ,&nbsp;Michael Chang ,&nbsp;Saaya Hario ,&nbsp;Takuya Terai ,&nbsp;Robert E. Campbell","doi":"10.1016/j.chembiol.2024.08.002","DOIUrl":"10.1016/j.chembiol.2024.08.002","url":null,"abstract":"<div><p>Synthetic-based fluorescent chemosensors and protein-based fluorescent biosensors are two well-established classes of tools for visualizing and monitoring biological processes in living tissues. Chemigenetic sensors, created using a combination of both synthetic parts and protein parts, are an emerging class of tools that aims to combine the strengths, and overcome the drawbacks, of traditional chemosensors and biosensors. This review will survey the landscape of strategies used for fluorescent chemigenetic sensor design. These strategies include: attachment of synthetic elements to proteins using <em>in vitro</em> protein conjugation; attachment of synthetic elements to proteins using autonomous protein labeling; and translational incorporation of unnatural amino acids.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 9","pages":"Pages 1652-1664"},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA and condensates: Disease implications and therapeutic opportunities RNA 和凝结物:疾病影响和治疗机会
IF 6.6 1区 生物学
Cell Chemical Biology Pub Date : 2024-09-19 DOI: 10.1016/j.chembiol.2024.08.009
Tina W. Han , Bede Portz , Richard A. Young , Ann Boija , Isaac A. Klein
{"title":"RNA and condensates: Disease implications and therapeutic opportunities","authors":"Tina W. Han ,&nbsp;Bede Portz ,&nbsp;Richard A. Young ,&nbsp;Ann Boija ,&nbsp;Isaac A. Klein","doi":"10.1016/j.chembiol.2024.08.009","DOIUrl":"10.1016/j.chembiol.2024.08.009","url":null,"abstract":"<div><p>Biomolecular condensates are dynamic membraneless organelles that compartmentalize proteins and RNA molecules to regulate key cellular processes. Diverse RNA species exert their effects on the cell by their roles in condensate formation and function. RNA abnormalities such as overexpression, modification, and mislocalization can lead to pathological condensate behaviors that drive various diseases, including cancer, neurological disorders, and infections. Here, we review RNA’s role in condensate biology, describe the mechanisms of RNA-induced condensate dysregulation, note the implications for disease pathogenesis, and discuss novel therapeutic strategies. Emerging approaches to targeting RNA within condensates, including small molecules and RNA-based therapies that leverage the unique properties of condensates, may revolutionize treatment for complex diseases.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 9","pages":"Pages 1593-1609"},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451945624003581/pdfft?md5=b0f6fb8d9ad651a69c2d0a3dc45b2d59&pid=1-s2.0-S2451945624003581-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The physiological and pathological roles of RNA modifications in T cells T 细胞中 RNA 修饰的生理和病理作用
IF 6.6 1区 生物学
Cell Chemical Biology Pub Date : 2024-09-19 DOI: 10.1016/j.chembiol.2024.06.003
{"title":"The physiological and pathological roles of RNA modifications in T cells","authors":"","doi":"10.1016/j.chembiol.2024.06.003","DOIUrl":"10.1016/j.chembiol.2024.06.003","url":null,"abstract":"<div><p><span><span>RNA molecules undergo dynamic chemical modifications in response to various external or cellular stimuli. Some of those modifications have been demonstrated to post-transcriptionally modulate the </span>RNA transcription, localization, stability, translation, and degradation, ultimately tuning the fate decisions and function of </span>mammalian cells, particularly T cells. As a crucial part of adaptive immunity, T cells play fundamental roles in defending against infections and tumor cells. Recent findings have illuminated the importance of RNA modifications in modulating T cell survival, proliferation, differentiation, and functional activities. Therefore, understanding the epi-transcriptomic control of T cell biology enables a potential avenue for manipulating T cell immunity. This review aims to elucidate the physiological and pathological roles of internal RNA modifications in T cell development, differentiation, and functionality drawn from current literature, with the goal of inspiring new insights for future investigations and providing novel prospects for T cell-based immunotherapy.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 9","pages":"Pages 1578-1592"},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prephenate decarboxylase: An unexplored branchpoint to unusual natural products Prephenate decarboxylase:通向不寻常天然产物的一个尚未探索的分支点
IF 6.6 1区 生物学
Cell Chemical Biology Pub Date : 2024-09-19 DOI: 10.1016/j.chembiol.2024.06.015
Mostafa Hagar , Raymond J. Andersen , Katherine S. Ryan
{"title":"Prephenate decarboxylase: An unexplored branchpoint to unusual natural products","authors":"Mostafa Hagar ,&nbsp;Raymond J. Andersen ,&nbsp;Katherine S. Ryan","doi":"10.1016/j.chembiol.2024.06.015","DOIUrl":"10.1016/j.chembiol.2024.06.015","url":null,"abstract":"<div><p>Prephenate decarboxylases are a small family of enzymes which initiate a specialized divergence from the shikimate pathway, where prephenate (<strong>2</strong>) is decarboxylated without aromatization. In addition to effecting a challenging chemical transformation, prephenate decarboxylases have been implicated in the production of rare specialized metabolites, sometimes directly constructing bioactive warheads. Many of the biosynthetic steps to natural products derived from prephenate decarboxylases remain elusive. Here, we review prephenate decarboxylase research thus far and highlight natural products that may be derived from biosynthetic pathways involving prephenate decarboxylases. We also highlight commonly encountered challenges in the structure elucidation of these natural products. Prephenate decarboxylases are a gateway into understudied biosynthetic pathways which present a high potential for the discovery of novel and bioactive natural products, as well as new biosynthetic enzymes.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 9","pages":"Pages 1610-1626"},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What is chemical biology? 什么是化学生物学?
IF 6.6 1区 生物学
Cell Chemical Biology Pub Date : 2024-09-19 DOI: 10.1016/j.chembiol.2024.08.011
Albert A. Antolin, Yimon Aye, Liron Bar-Peled, Elena De Vita, Natavan Dudkina, Michael C. Jewett, Hannah Kiely-Collins, Ralph Mazitschek, Zhenrun Jerry Zhang
{"title":"What is chemical biology?","authors":"Albert A. Antolin,&nbsp;Yimon Aye,&nbsp;Liron Bar-Peled,&nbsp;Elena De Vita,&nbsp;Natavan Dudkina,&nbsp;Michael C. Jewett,&nbsp;Hannah Kiely-Collins,&nbsp;Ralph Mazitschek,&nbsp;Zhenrun Jerry Zhang","doi":"10.1016/j.chembiol.2024.08.011","DOIUrl":"10.1016/j.chembiol.2024.08.011","url":null,"abstract":"<div><p>Since its inception, the chemical biology field has undergone significant evolution, with its definition varying greatly based on individual perspectives. For the September 30<sup>th</sup> anniversary special issue of <em>Cell Chemical Biology</em>, we asked our readers from a range of backgrounds, what is chemical biology?</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 9","pages":"Pages 1562-1565"},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信