{"title":"Chitin isolation from crustaceans and mushrooms: The need for quantitative assessment","authors":"Akhiri Zannat , Julia L. Shamshina","doi":"10.1016/j.carbpol.2024.122882","DOIUrl":"10.1016/j.carbpol.2024.122882","url":null,"abstract":"<div><div>This review examines key journal articles on the isolation of chitin from mushroom biomass comparing these findings to those related to crustacean chitin. It highlights the need for standardizing chitin characterization, emphasizing that chitin comprises a family of polymers with variations in molecular weight (Mw), degree of acetylation (%DA), and acetylation patterns (P<sub>A</sub>), leading to diverse physicochemical properties and biological activities. The review positions fungi and mushrooms as emerging sources of ‘vegan’ chitin, being non-animal and free from allergenic proteins. Their ability to be cultivated year-round, along with rapid growth and low-cost biowaste substrates, makes them attractive alternatives to crustacean chitin. Market adoption of mushroom chitin will depend on its potential applications in high-value products. Traditionally, chitin characterization has been semi-qualitative, but there is now a growing recognition of how sample inconsistencies impact research quality. This review underscores the importance of quantitative analysis for achieving practical, repeatable, and reproducible results while addressing the challenges in characterizing fungal chitin. We argue that accurately determining the properties of fungal chitin is essential and should be a fundamental aspect of every study, as these properties significantly influence the polymer's characteristics and biological activity.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122882"},"PeriodicalIF":10.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ebenezer Ola Falade , Kouadio Jean Eric-Parfait Kouamé , Yanyun Zhu , Yunyun Zheng , Xingqian Ye
{"title":"A review: Examining the effects of modern extraction techniques on functional and structural properties of cellulose and hemicellulose in Brewer's Spent Grain dietary fiber","authors":"Ebenezer Ola Falade , Kouadio Jean Eric-Parfait Kouamé , Yanyun Zhu , Yunyun Zheng , Xingqian Ye","doi":"10.1016/j.carbpol.2024.122883","DOIUrl":"10.1016/j.carbpol.2024.122883","url":null,"abstract":"<div><div>Brewer's Spent Grain (BSG) is a by-product of the brewing industry, rich in dietary fibers that offer various health benefits. This review delves into the molecular and structural transformations of BSG and dietary fibers (arabinoxylan, beta-glucan, cellulose etc.) extracted from BSG, triggered by recent advancements in extraction technologies. Through an analysis of current methodologies, such as advanced solubilization methods and emerging technologies like ultrasonication, this paper discusses their significant improvement in yield of BSG-dietary fiber and impact on the structural and functional properties of BSG-dietary fibers (BSG-DF). The review highlights how these technologies enhance fiber solubilization and modify physicochemical properties, thereby improving their functionality in food applications. Furthermore, the review aims to bridge gaps in current research and suggest future directions for optimizing extraction processes to better exploit these fibers in the food industries.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122883"},"PeriodicalIF":10.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Chen , Hriday Bera , Liangwei Si , Fangfang Xiu , Peixin Liu , Jiahui Li , Xueying Xu , Xiaoxuan Zhu , Yuxin Li , Dongmei Cun , Xiong Guo , Mingshi Yang
{"title":"Tailor-made curdlan based nanofibrous dressings enable diabetic wound healing","authors":"Yang Chen , Hriday Bera , Liangwei Si , Fangfang Xiu , Peixin Liu , Jiahui Li , Xueying Xu , Xiaoxuan Zhu , Yuxin Li , Dongmei Cun , Xiong Guo , Mingshi Yang","doi":"10.1016/j.carbpol.2024.122876","DOIUrl":"10.1016/j.carbpol.2024.122876","url":null,"abstract":"<div><div>The development and application of novel polysaccharides that can improve diabetic wound healing is crucial. Dressings containing curdlan have the potential to promote healing in diabetic wounds, but the underlying mechanism remain unclear. In addition, the functional modifications that could further enhance the activity of curdlan in promoting diabetic wound healing have not been explored. Herein, we investigated the capabilities of curdlan (CU) and its four derivatives <em>i.e.,</em> sulfated curdlan (SC), amino-curdlan (AC) carboxymethyl curdlan (CMC) and CMC/ZnO nanocomposites for diabetic wound healing. Pristine CU and its derivatives were blended with polyvinyl alcohol (PVA) to fabricate electrospun nanofiber dressings (ENDs) with uniform appearances. The PVA/CU, PVA/CMC and PVA/CMC-ZnO ENDs were more compatible with keratinocytes, fibroblasts, and macrophages than that of PVA/AC ENDs. Notably, PVA/CMC ENDs and PVA/CMC-ZnO ENDs exhibited superior wound healing efficiencies than other ENDs. Among various dressings, PVA/CU, PVA/SC, PVA/CMC ENDs effectively reduced M1 macrophages and facilitated M2 phenotype at early stage of diabetic wound healing. Collectively, the PVA/CMC ENDs demonstrated greater therapeutic potential against diabetic wounds compared to other modified scaffolds <em>via</em> regulating macrophage polarization.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122876"},"PeriodicalIF":10.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anass Oulkhir , Karim Lyamlouli , Ali Oussfan , François Orange , Abderrahmane Etahiri , Rachid Benhida
{"title":"Efficient flotation separation approach of apatite from calcite for phosphate up-grading using phosphorylated starch macromolecules as a selective depressant","authors":"Anass Oulkhir , Karim Lyamlouli , Ali Oussfan , François Orange , Abderrahmane Etahiri , Rachid Benhida","doi":"10.1016/j.carbpol.2024.122878","DOIUrl":"10.1016/j.carbpol.2024.122878","url":null,"abstract":"<div><div>Physico-chemical similarities of surface proprieties of calcite and apatite make their separation challenging. Effective flotation separation requires sustainable depressants to mitigate environmental consequences associated with traditional chemical reagents. Here, for the first time we explore the potential of phosphorylated starch (PS) derived from potato waste as a green and effective depressant. Starch was modified using a straightforward phosphorylation process, resulting in PS with a remarkable charge density exceeding 6000 mmol kg<sup>−1</sup>. The PS was then evaluated for its ability to depress apatite, enhancing the separation efficiency of apatite from calcite in phosphate rock beneficiation via reverse flotation. Micro-flotation experiments revealed PS's distinct depression effect on apatite while minimally impacting calcite. Floatability rates of apatite and calcite were 90.45 % and 92.68 %, respectively. Introducing 10 mg/g PS drastically reduced apatite recovery to <19 %, while calcite recovery remained at 78.80 %. The bench-scale flotation tests demonstrated an upgrading of the phosphate rock to 70,64 % Bone Phosphate of Lime (BPL) with a yield of 89,41 %. Mechanistic studies employing zeta potential (ZP), and wettability analysis elucidated the depression mechanism. Apatite retained hydrophilicity post-PS addition and conditioning with ester, while calcite-acquired hydrophobicity even in the presence of PS. Furthermore, PS exhibited substantial adsorption onto the apatite surface through chemical reactions involving the phosphate groups and the activated calcium sites on the apatite. Overall, PS stands out as a promising, eco-friendly, and remarkably efficient depressant for separating apatite from calcite through flotation.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122878"},"PeriodicalIF":10.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-assembled near-infrared-photothermal antibacterial Hericium erinaceus β-glucan/tannic acid/Fe (III) hydrogel for accelerating infected wound healing","authors":"Shi-Kang Chen, Jin-Jin Liu, Xin Wang, Hui Luo, Wei-Wei He, Xiao-Xiao Song, Jun-Yi Yin, Shao-Ping Nie","doi":"10.1016/j.carbpol.2024.122898","DOIUrl":"10.1016/j.carbpol.2024.122898","url":null,"abstract":"<div><div>Bacterial infection severely hinders skin wound healing, highlighting the critical application value of developing antibacterial and anti-inflammatory hydrogel dressings. In this work, we focused on β-glucan from <em>Hericium erinaceus</em> (HEBG) as the research object, and proposed a solvent-induced combined temperature manipulation technique to trigger multilevel self-assembly of β-glucan. Furthermore, we incorporated green synthesized near-infrared photosensitizer tannic acid (TA)/iron (III) complex into the system. A hydrogel with exceptional antibacterial properties, capable of responding to near-infrared photothermal stimuli while exhibiting remarkable stiffness and structural consistency, was successfully synthesized. Under near-infrared radiation, HEBG/TA/Fe hydrogels produced local hyperthermia and exhibited excellent antibacterial activity against bacteria-infected wounds. Moreover, the HEBG/TA/Fe hydrogel demonstrates its ability to regulate cytokines by effectively inhibiting the production of inflammatory mediators TNF-α and IL-6, while simultaneously enhancing the expression of cell proliferation factor KI-67 and markers associated with angiogenesis such as CD31 and α-SMA. Notably, the results of tissue staining revealed that the NIR + HEBG/TA/Fe<sub>5</sub> hydrogel could effectively promoting granulation and vascularization, improving collagen deposition in infected wounds thereby accelerating the healing process. These findings indicate that mixed hydrogels exhibit potential as viable options for the treatment of bacterial infections.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122898"},"PeriodicalIF":10.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yeonsoo Lee , Hee-Man Yang , Yewon Jeong , Ga-Eun Lee
{"title":"Inkjet-based facile fabrication of a copper ferrocyanide-embedded magnetic alginate microadsorbent for highly enhanced cesium removal","authors":"Yeonsoo Lee , Hee-Man Yang , Yewon Jeong , Ga-Eun Lee","doi":"10.1016/j.carbpol.2024.122877","DOIUrl":"10.1016/j.carbpol.2024.122877","url":null,"abstract":"<div><div>For the first time, simple and facile fabrication of a magnetic alginate microadsorbent via piezoelectric inkjet technology was developed for the selective removal of <sup>137</sup>Cs via magnetic separation. Through the ejection of an alginate solution containing potassium ferrocyanide and magnetic nanoparticles (MNPs) into a Cu<sup>2+</sup> solution via an inkjet device, the fabrication of a copper ferrocyanide-embedded magnetic alginate microadsorbent (CuFC-MAM) with an average size of 39.38 μm was easily achieved in a one-pot fabrication process; here, the Cu<sup>2+</sup> ions acted as both a cross-linker for the gelation of alginate and a Cu source for the in situ synthesis of CuFC with potassium ferrocyanide. The Cs adsorption behavior of CuFC-MAM was effectively fitted by the pseudo-second-order kinetic model and Langmuir isotherm. Owing to the increased specific surface area of CuFC-MAM, its pseudo-second-order rate constant and maximum adsorption capacity were 76.54 and 1.486 times greater than those of CuFC-embedded magnetic alginate macroadsorbents fabricated without inkjet devices. Compared with other Cs adsorbents, CuFC-MAM presented the highest maximum capacity and K<sub>d</sub> value; these results were attributed to the high content of CuFC in CuFC-MAM (50.15%). In addition, our CuFC-MAM exhibited an excellent removal efficiency of radioactive Cs, exceeding 99% from seawater.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122877"},"PeriodicalIF":10.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vijay Kumar , Manish S. Bhoyar , Chandra S. Mohanty , Puneet S. Chauhan , Kiran Toppo , Sachitra K. Ratha
{"title":"Untapping the potential of algae for β-glucan production: A review of biological properties, strategies for enhanced production and future perspectives","authors":"Vijay Kumar , Manish S. Bhoyar , Chandra S. Mohanty , Puneet S. Chauhan , Kiran Toppo , Sachitra K. Ratha","doi":"10.1016/j.carbpol.2024.122895","DOIUrl":"10.1016/j.carbpol.2024.122895","url":null,"abstract":"<div><div>β-Glucan, a naturally occurring polymer of glucose, is found in bacteria, algae, fungi, and higher plants (barley, oats, cereal seeds). Recently, β-glucan has gained attention due to its multiple biological roles, like anticancer, anti-inflammatory, and immunomodulatory effects. Globally, bacteria, mushrooms, yeast and cereals are used as conventional sources of β-glucan. However, obtaining it from these sources is challenging due to low quantity, complex branched structure, and costly extraction process. Algae have emerged as a potential sustainable alternative source of β-glucan to conventional sources due to several advantages including unique structural and functional advantages, higher yields, faster growth rates, and large-scale production in a controlled environment. Additionally, extracting β-glucan from microalgal sources is relatively easy and can be done without altering the structure of β-glucan. Some algal species, such as <em>Euglena</em> spp., are reported to contain higher β-glucan content than conventional β-glucan sources. This review highlights the current research and opportunities associated with algae-derived β-glucan and their biological roles. The challenges, research gaps and strategies to enhance algae-based β-glucan production and the need for further research in this promising area are also discussed. Future research can be extended to comprehend the cellular and molecular mechanisms via which β-glucan functions.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122895"},"PeriodicalIF":10.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jieying Li , Chris Klaassen , Peilong Li , Arkaye Kierulf , Mohammad Yaghoobi , Leila Khazdooz , Amin Zarei , James Smoot , Yong Lak Joo , Alireza Abbaspourrad
{"title":"Using gas-assisted electrospinning to design rod-shaped particles from starch for thickening agents and Pickering emulsifiers","authors":"Jieying Li , Chris Klaassen , Peilong Li , Arkaye Kierulf , Mohammad Yaghoobi , Leila Khazdooz , Amin Zarei , James Smoot , Yong Lak Joo , Alireza Abbaspourrad","doi":"10.1016/j.carbpol.2024.122902","DOIUrl":"10.1016/j.carbpol.2024.122902","url":null,"abstract":"<div><div>Starch's large particle size and compact semi-crystalline structure limit its effectiveness as an emulsifier and shear-reversible thickener. To address this, we used gas-assisted electrospinning to convert large starch granules into thin fibers and then into rod-shaped particles for use as starch-based thickeners and emulsifiers. Manipulating the starch concentration in formic acid, and the electrospinning parameters, caused the jetted polymers to form different shapes. At low starch content (<5 w/w%), electrospraying produced smaller particles (0.4–3.0 μm diameter). At higher concentrations, the polymers tangled and favored the formation of fibers (0.5–3.9 μm diameter). The starch's morphological behavior was fine-tuned by adjusting flow rate, coaxial airflow pressure, voltage, needle gauge, and jetting distance. Extensive formic acid treatment (> 4 days) caused a fiber-to-bead transition. Fiber suspensions exhibited ∼10<sup>6</sup>-times higher viscosity (3215 Pa·s at a shear rate of 0.002 s<sup>−1</sup>) than unmodified starch. High-shear and ultrasonication were used post-spin to chop the fibers into rod-shaped particles (4, 6 and 8 μm length), which were used as effective emulsifiers. The longest rods (8 μm) stabilized emulsions with the smallest droplets (12 μm). Using food-safe polymers, this study demonstrated that the shape of particles plays important roles in modulating the material functionalities.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122902"},"PeriodicalIF":10.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Man Zhang , Jiapei Liao , Zhang Zhang , Hui Shi , Jixu Wu , Weijuan Huang , Chunlei Li , Liyan Song , Rongmin Yu , Jianhua Zhu
{"title":"Structural characterization of two novel heteropolysaccharides from Catharanthus roseus and the evaluation of their immunological activities","authors":"Man Zhang , Jiapei Liao , Zhang Zhang , Hui Shi , Jixu Wu , Weijuan Huang , Chunlei Li , Liyan Song , Rongmin Yu , Jianhua Zhu","doi":"10.1016/j.carbpol.2024.122896","DOIUrl":"10.1016/j.carbpol.2024.122896","url":null,"abstract":"<div><div><em>Catharanthus roseus,</em> a plant with significant therapeutic value in Chinese folk medicine, contain numerous secondary metabolites. However, the primary metabolites, specifically polysaccharides which might play an important role in immunotherapy, have received limited attention. In the present study, two novel polysaccharides, designated as CRPS-1 and CRPS-2, were isolated from <em>C. roseus</em>. The structures of CRPS-1 and CRPS-2 were characterized using a combination of HPSEC, HPLC, IR, GC‐MS, 1D NMR and 2D NMR. Both CRPS-1 and CRPS-2 were identified as homogeneous heteropolysaccharides. Additionally, the weight-average molecular weight of CRPS-2 was lower than that of CRPS-1. The backbone of CRPS-1 was composed of 1,3-α-L-Ara<em>f</em>, 1,5-α-L-Ara<em>f</em>, 1,3,5-α-L-Ara<em>f</em>, 1,3,4-α-L-Rha<em>p</em>, 1,3-α-D-Gal<em>p</em>, 1,3,4-α-D-Gal<em>p</em>, 1,4-β-D-Man<em>p</em>, and side chains comprised of T-α-L-Ara<em>f</em>, T-β-D-Man<em>p</em>, and β-D-Glc<em>p</em>-(1 → 3)-α-D-Gal<em>p</em>-(1 → 3) -α-L-Rha<em>p</em>-(1→. CRPS-2 mainly consisted of 1,3-α-D-Gal<em>p</em>, 1,3,4-α-D-Gal<em>p</em>, 1,6-β-D-Man<em>p</em>, 1,5-α-L-Ara<em>f</em>, 1,3,5-α-L-Ara<em>f</em>, 1,3-α-L-Rha<em>p</em> and 1,3,4-α-L-Fuc<em>p</em> with complex branching structures. Furthermore, CRPS-2 could significantly enhance proliferation and phagocytosis, as well as the secretion of cytokines in RAW264.7 cells. It demonstrated potent immunoregulatory activity by activating the MAPK/Akt/NF-κB signaling pathways. In summary, the utilization of galactose-enriched and low-molecular-weight polysaccharides exhibits great potential in the advancement of innovative functional foods that may provide health benefits.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122896"},"PeriodicalIF":10.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanping Huang , Keke Liao , Zengling Yang , Sicong Tian , Xiangru Yuan , Xingming Sun , Zichao Li , Lujia Han
{"title":"Novel CRM cosine similarity mapping strategy for simultaneous in-situ visual profiling lignocellulose in plant cell walls","authors":"Yuanping Huang , Keke Liao , Zengling Yang , Sicong Tian , Xiangru Yuan , Xingming Sun , Zichao Li , Lujia Han","doi":"10.1016/j.carbpol.2024.122904","DOIUrl":"10.1016/j.carbpol.2024.122904","url":null,"abstract":"<div><div>Confocal Raman microscopy (CRM) is a promising <em>in-situ</em> visual technique that provides detailed insights into multiple lignocellulosic components and structures in plant cell walls at the micro-nano scale. In this study, we propose a novel CRM cosine similarity (CS) mapping strategy for the simultaneous <em>in-situ</em> visual profiling of lignin, cellulose, and hemicellulose in plant cell walls. The main stages of this strategy include: 1) a modified Otsu algorithm for extracting the regions of interest (ROI); 2) a modified subtraction method for cleaning the background signals in the ROI spectra; 3) a lignin signal subtraction method based on the pixel correction factor for eliminating the interference of strong lignin signals with weak cellulose and hemicellulose signals in the Raman full spectra of the cell walls; 4) second-order derivative spectral preprocessing for enhancing the discrimination between the characteristic peaks of cellulose and hemicellulose; 5) a CS mapping algorithm for simultaneous <em>in-situ</em> profiling of lignin, cellulose, and hemicellulose in plant cell walls. The effectiveness of the strategy is verified by characterizing the <em>Brittle Culm1</em> (<em>BC1</em>) gene-mutant rice stem (IL349-BC1-KO) with known bioinformatics. This approach provides methodological support for <em>in-situ</em> visualization and analysis in fields such as plant or crop science at the micro-nano scale.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122904"},"PeriodicalIF":10.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}