{"title":"Corrigendum to “A one-step approach to make cellulose-based hydrogels of various transparency and swelling degrees” [Carbohydrate Polymers, volume 186, 15 April 2018, pages 208–216]","authors":"Hongjuan Geng","doi":"10.1016/j.carbpol.2024.122857","DOIUrl":"10.1016/j.carbpol.2024.122857","url":null,"abstract":"","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"347 ","pages":"Article 122857"},"PeriodicalIF":10.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Glucose-activated self-cascade antibacterial and pro-angiogenesis nanozyme-functionalized chitosan-arginine thermosensitive hydrogel for chronic diabetic wounds healing","authors":"Shuhui Chen, Jiali Chen, Xinlong Wang, Zhaofei Yang, Jinxi Lan, Liudi Wang, Bingjie Ji, Yue Yuan","doi":"10.1016/j.carbpol.2024.122894","DOIUrl":"10.1016/j.carbpol.2024.122894","url":null,"abstract":"<div><div>Affected by persistent hyperglycemia, diabetic neuropathy, and vasculopathy hinder the progression of wound healing by exacerbating susceptibility to recurrent bacterial infection and impairing vascularization. In order to cater to the requirements of diabetic chronic wound healing at various stages, we designed an antibacterial and pro-angiogenic wound dressing with localized glucose-lowering capacity. In this study, we constructed a copper-based metal-organic framework (MOF) nanozyme and loaded with glucose oxidase (GOX) to prepare Cu-MOF/GOX, which was subsequently integrated with CS-Arg (chitosan modified by L-Arginine) and Pluronic (F127) to fabricate multifunctional Cu-MOF/GOX-Gel thermosensitive hydrogel. The GOX generated H<sub>2</sub>O<sub>2</sub> (hydrogen peroxide) and gluconic acid by consuming high blood glucose at the wound site, thus initiating an efficient antibacterial self-cascade catalytic in the initial stages of wound healing. With the further catalysis of <em>in situ</em> generated H<sub>2</sub>O<sub>2</sub>, NO (nitric oxide) was gradually released from the hydrogel, facilitating angiogenesis and accumulation of collagen, thereby expediting subsequent phases of wound healing. Overall, the Cu-MOF/GOX-Gel exhibits a comprehensive ability to locally regulate blood glucose levels, while also synergistically promoting antibacterial activity and angiogenesis, that effectively chronic diabetic wounds healing.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122894"},"PeriodicalIF":10.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manli Wang , Yuting Lv , Huipeng Xu , Xiangyu Zhao , Guoqing Zhang , Siwen Wang , Caifen Wang , Wenting Wu , Li Wu , Weifeng Zhu , Jiwen Zhang
{"title":"Supramolecular cyclodextrin-based reservoir as nasal delivery vehicle for rivastigmine to brain","authors":"Manli Wang , Yuting Lv , Huipeng Xu , Xiangyu Zhao , Guoqing Zhang , Siwen Wang , Caifen Wang , Wenting Wu , Li Wu , Weifeng Zhu , Jiwen Zhang","doi":"10.1016/j.carbpol.2024.122881","DOIUrl":"10.1016/j.carbpol.2024.122881","url":null,"abstract":"<div><div>The purpose of this study involved the synthesis of supramolecular reservoir (i.e. cyclodextrin metal-organic framework, MOF) using cyclodextrins as building blocks, followed by cross-linking to obtain crosslinked CD framework (CDF) using CD-MOF as template and functionalized with borneol (BO) to enhance rivastigmine (RIV) permeation and facilitate brain targeting via intranasal administration. Utilizing BO modified CDF (BO-CDF) with cubic shape as a carrier for the encapsulation of RIV, a nasal RIV delivery system (RIV@BO-CDF) was fabricated. The particle size of RIV@BO-CDF was approximately 250 nm, and the drug loading capacity reached 15 ± 2 %. BO-CDF improved the mucoadhesion and enhanced RIV permeability with the plasma concentration-time curve (AUC), the brain AUC and the peak drug concentration within brain in rats 1.7, 2.3 and 8 times than that of oral RIV solution, respectively. The relative drug targeting efficiency percentage (DTE, 139.4 %) and direct drug transfer percentage (DTP, 28.3 %) of RIV@BO-COF indicated good targeting efficiency and direct nose-to-brain drug delivery. Overall, this study provides a potential application of supramolecular cyclodextrin-based reservoir to enhance the brain targeting and efficacy of the RIV via nasal delivery.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122881"},"PeriodicalIF":10.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongmei Zhao , Xi He , Chengjia Tan , Ali Murad Jakhar , Fuyuan He , Jiahua Ma
{"title":"Chitosan-melanin complex microsphere: A potential colonic delivery system for protein drugs","authors":"Hongmei Zhao , Xi He , Chengjia Tan , Ali Murad Jakhar , Fuyuan He , Jiahua Ma","doi":"10.1016/j.carbpol.2024.122886","DOIUrl":"10.1016/j.carbpol.2024.122886","url":null,"abstract":"<div><div>The characteristics and performance of chitosan-based colon delivery systems are significantly influenced by the method of preparation. Insect chitosan-melanin complex (CMC) may offer superior attributes over traditional shrimp and crab chitosan (CS) for colon-targeted administration. This study used dung beetle CMC as the carrier matrix and comprehensively examined the impact of various crosslinking techniques on the colonic drug delivery efficacy of microspheres, encompassing drug loading, swelling, drug release behavior, adhesion, enzymatic degradation, and absorption enhancement. The results indicate that F-TPPLC microspheres, crosslinked with a combination of formaldehyde and sodium tripolyphosphate, exhibit superior drug loading capabilities, optimal swelling behavior, and controlled in vitro drug release profiles in the colonic environment, along with excellent adhesion and enzymatic degradation properties within intestinal tract. Notably, these F-TPPLC microspheres increase paracellular permeability, possibly by disrupting the calcium-dependent adhesion junctions. In comparison to commercial CS, CMC demonstrates superior drug encapsulation efficiency, enhanced colonic drug release, adhesion, and absorption promotion, rendering it a favorable candidate as a carrier in colon-targeted drug delivery systems. Consequently, F-TPPLC microspheres derived from CMC are highly suitable for colon drug delivery applications and show promising potential for the oral delivery of peptide and protein-based therapeutics to the colon.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122886"},"PeriodicalIF":10.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ya Li , Xingzi Wang , Jiangyan Chen , Luyun Sun , Debing Pu , Lisha Lin , Lan Luo , Xi Gong , Junxue Pu , Mingyi Wu
{"title":"Structural analysis and accelerating wound healing function of a novel galactosylated glycosaminoglycan from the snail Helix lucorum","authors":"Ya Li , Xingzi Wang , Jiangyan Chen , Luyun Sun , Debing Pu , Lisha Lin , Lan Luo , Xi Gong , Junxue Pu , Mingyi Wu","doi":"10.1016/j.carbpol.2024.122900","DOIUrl":"10.1016/j.carbpol.2024.122900","url":null,"abstract":"<div><div>Diabetic foot ulcers (DFUs) as a nonhealing wound remain a clinical challenge, and the development of pro-healing and cost-effective drugs is in urgent need. Herein, we reported a novel galactosylated glycosaminoglycan (GAG) from the snail <em>Helix lucorum</em>, as an effective pro-healing compound. The snail GAG is composed of a heparan sulfate-like main chain and galactose side chains at C-3 of GlcNAc residue. Its main chain has a repeating disaccharide structure of → 4)-α-D-GlcNAc-(1 → 4)-α-L-IdoA<sub>2S</sub>(1 →. This is the first example of glycosaminoglycan with galactose branches from mollusks. Pharmacological experiments showed that the <em>H. lucorum</em> GAG significantly promoted skin wound healing in both healthy and diabetic mice by accelerating granulation tissue regeneration, angiogenesis, and collagen deposition. The distinctive galactosylated substitution may play an important role on its pro-healing activity. Our discovery enriches the diversity of non-anticoagulant heparan sulfate-like glycosaminoglycans, and provides a potential candidate of pro-healing drug for treating diabetic wound.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122900"},"PeriodicalIF":10.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Melt processing of chemically modified cellulosic fibres with only water as plasticiser: Effects of moisture content and processing temperature","authors":"Emile R. Engel , Giada Lo Re , Per A. Larsson","doi":"10.1016/j.carbpol.2024.122891","DOIUrl":"10.1016/j.carbpol.2024.122891","url":null,"abstract":"<div><div>To replace petroleum-derived polymers with cellulose fibres, it is desirable to have the option of melt processing. However, upon heating, cellulose degradation typically starts before the material reaches its softening temperature. Alternatives to plastics should also, ideally, be recyclable via existing recycling streams. Here, we address the problem of melt processing cellulose as fibres while preserving recyclability. Native cellulose fibres were partially modified to dialcohol cellulose to impart thermoplastic characteristics. We demonstrate melt processing of these modified fibres with only water as plasticiser. Processability was investigated at selected processing temperatures and initial moisture content by monitoring the axial force of the extruder screws as a rheological indicator. The effects on molecular structure, fibre morphology and material properties were characterised by NMR spectroscopy, microscopy, tensile testing, fibre morphology analysis and X-ray diffraction. When comparing the melt-processed extrudate with handsheets, the already exceptional ductility was further increased. Moderate losses in tensile strength and stiffness were observed and are attributable to a loss of crystallinity and fibre shortening. This is the first report of strong and durable extrudates using cellulosic fibres as the only feedstock. Finally, the potential for recycling the processed material with unmodified fibres by paper recycling procedures was demonstrated.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122891"},"PeriodicalIF":10.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natallia V. Dubashynskaya , Anton N. Bokatyi , Andrey S. Trulioff , Artem A. Rubinstein , Veronika P. Novikova , Valentina A. Petrova , Elena N. Vlasova , Alexey V. Malkov , Igor V. Kudryavtsev , Yury A. Skorik
{"title":"Delivery system for dexamethasone phosphate based on a Zn2+-crosslinked polyelectrolyte complex of diethylaminoethyl chitosan and chondroitin sulfate","authors":"Natallia V. Dubashynskaya , Anton N. Bokatyi , Andrey S. Trulioff , Artem A. Rubinstein , Veronika P. Novikova , Valentina A. Petrova , Elena N. Vlasova , Alexey V. Malkov , Igor V. Kudryavtsev , Yury A. Skorik","doi":"10.1016/j.carbpol.2024.122899","DOIUrl":"10.1016/j.carbpol.2024.122899","url":null,"abstract":"<div><div>Hybrid nano- and microparticles based on metal ion crosslinked biopolymers are promising carriers for the development of drug delivery systems with improved biopharmaceutical properties. In this work, dexamethasone phosphate-containing particles based on chondroitin sulfate and chitosan or diethylaminoethyl chitosan additionally crosslinked with Zn<sup>2+</sup> were prepared. Depending on the polycation/polyanion ratio in the system, anionic and cationic polyelectrolyte complexes (PECs) were obtained. The anionic Zn<sup>2+</sup>-containing and Zn<sup>2+</sup>-free PECs had sizes of 154 and 180 nm and ζ-potentials of −22.4 and −27.5 mV, respectively. The cationic Zn<sup>2+</sup>-containing and Zn<sup>2+</sup>-free PECs had sizes of 242 and 362 nm and ζ-potentials of 22.4 and 24.7 mV, respectively. The presence of Zn<sup>2+</sup> in the system significantly prolonged the release of dexamethasone phosphate from the hybrid polyelectrolyte particle. The resulting release profiles of dexamethasone phosphate were in agreement with the Peppas-Sahlin kinetic model, which considers the combined effects of Fickian diffusion and polymer chain relaxation on the drug release rate. It was shown that the prolongation of drug release was mainly due to swelling and relaxation of the Zn<sup>2+</sup> crosslinked polymers. The developed particles exhibited good mucoadhesive properties and pronounced anti-inflammatory activity, making them attractive candidates for biomedical applications.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122899"},"PeriodicalIF":10.7,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaodan Qi , Ying Liu , Ying Zhou , Heqi Li , Jingyi Yang , Senyang Liu , Xinyi He , Lei Li , Chunjing Zhang , Haitao Yu
{"title":"A pectic polysaccharide from Typhonii Rhizoma: Characterization and antiproliferative activity in K562 cells through regulating mitochondrial function and energy metabolism","authors":"Xiaodan Qi , Ying Liu , Ying Zhou , Heqi Li , Jingyi Yang , Senyang Liu , Xinyi He , Lei Li , Chunjing Zhang , Haitao Yu","doi":"10.1016/j.carbpol.2024.122897","DOIUrl":"10.1016/j.carbpol.2024.122897","url":null,"abstract":"<div><div>The pectic polysaccharide WTRP-A0.2b (43 kDa) has been isolated from <em>Typhonii rhizoma</em> and analyzed in terms of its structural features, anti-tumor activities and mechanism of action. NMR, FT-IR, monosaccharide composition, and enzymology demonstrate that WTRP-A0.2b is composed of rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II) and homogalacturonan (HG) domains with mass ratios of 3.7:1:1.7, respectively. The RG-I domains contain a highly branched structure that is substituted primarily with β-D-1,4-galactan, α-L-1,5-arabinan, and AG-II. The HG domains contain un-esterified and methyl-esterified and/or acetyl-esterified oligogalacturonides with a degree of polymerization of 1–8. <em>In vitro</em> experiments demonstrate that WTRP-A0.2b inhibits proliferation of K562 cells by inducing mitochondrial damage and suppressing glycolysis. This activity promotes mitochondrial permeability, increases production of reactive oxygen species (ROS), boosts extracellular oxygen consumption and adenosine triphosphate (ATP) content, while it decreases uncoupling protein-2 (UCP2) expression and lactic acid content. Our results provide valuable insight for screening natural polysaccharide-based anti-tumor effects of polysaccharides from <em>Typhonii rhizoma</em>.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122897"},"PeriodicalIF":10.7,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhenrong Tan , Beibei Yang , Weifeng Liu , Dongjie Yang , Xueqing Qiu , Dafeng Zheng
{"title":"Multifunctional lignin-reinforced cellulose foam for the simultaneous removal of oils, dyes, and metal ions from water","authors":"Zhenrong Tan , Beibei Yang , Weifeng Liu , Dongjie Yang , Xueqing Qiu , Dafeng Zheng","doi":"10.1016/j.carbpol.2024.122890","DOIUrl":"10.1016/j.carbpol.2024.122890","url":null,"abstract":"<div><div>Pollutants emitted by industry pose an emerging threat to ecosystems, human health and native species, which has attracted global attention. At present, most of the biomass-based water remediation materials suffer from the poor mechanical properties, complexity of the modification process, single function and low adsorption capacity. Therefore, a high-strength lignin/cellulose foam absorbent (LCMA) with super-hydrophilic surface was developed for wastewater treatment by using lignin as the skeleton to crosslink cellulose through sol-gel method. Combined with an abundance of reactive functional groups and a highly porous structure, LCMA demonstrated a superior absorption and removal performance for cationic dyes and heavy metal ions, with separation efficiencies exceeding 99.76 % for cationic dyes and 99.85 % for heavy metal ions. Further modification of LCMA by a facile method using polydopamine (PDA) and polyethyleneimine (PEI) imparted superhydrophilicity to the foams. The developed LCMA@PDA@PEI exhibited an impressive immiscible oil-water separation performance and emulsion separation performance (Separation efficiency >99.95 % for immiscible oil-water mixtures and >99.05 % for oil-in-water emulsions). With the capabilities of simultaneous removal for dyes, heavy metal ions and oil pollutants from water, LCMA holds a broad application prospect in the water remediation, especially in the treatment of polluted water with complex components.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122890"},"PeriodicalIF":10.7,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Cabrera-Villamizar , Jéssica Fernanda Pereira , María Castanedo , Amparo López-Rubio , María José Fabra
{"title":"Hemp cellulose-based aerogels and cryogels: From waste biomass to sustainable absorbent pads for food preservation","authors":"Laura Cabrera-Villamizar , Jéssica Fernanda Pereira , María Castanedo , Amparo López-Rubio , María José Fabra","doi":"10.1016/j.carbpol.2024.122887","DOIUrl":"10.1016/j.carbpol.2024.122887","url":null,"abstract":"<div><div>This study presents a circular economy approach utilizing hemp stems and rice straw, typically perceived as low-value agricultural waste, to develop a sustainable alternative to traditional plastic absorbent pads for food packaging. The development of an active material was achieved through the utilization of hemp cellulose and a bioactive extract isolated from rice straw. In addition to reducing plastic pollution, this material demonstrates the potential to enhance food preservation. This research provides evidence of the benefits of repurposing agricultural by-products to create valuable and environmentally-friendly products. Hemp cellulose was extracted, characterized, and processed to develop stable aerogels and cryogels through supercritical CO<sub>2</sub> drying and freeze-drying. The water stability and internal structure of the materials were guided via TEMPO-mediated oxidation and high-pressure homogenization. Both materials showed versatile physicochemical and mechanical properties. Nevertheless, with higher water sorption (2.20 mL/g), minimal dimensional changes, and lower shrinkage, cryogels were suitable for meat absorbent pad application. To enhance the cryogels functionality, they were impregnated with a rice straw bioactive extract in two different concentrations. The incorporation of the extract did not affect the structure of the cryogels, improved their mechanical properties and the antioxidant activity remained stable after drying (63.89–78.96 %). Finally, the performance of the developed materials was compared to commercial plastic pads and pristine meat preservation challenge test during 9 days at refrigeration conditions. The incorporation of rice straw extract improved meat color preservation. While moderate extract concentrations (75 mg/g) showed a protective effect against lipid oxidation, higher levels (187.5 mg/g) induced pro-oxidant reactions. This research highlights the potential of hemp cellulose-based cryogels as sustainable and functional packaging materials for meat products.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122887"},"PeriodicalIF":10.7,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}