Bioresource Technology最新文献

筛选
英文 中文
Deciphering key microbes and their interactions within anaerobic ammonia oxidation systems 解密厌氧氨氧化系统中的关键微生物及其相互作用。
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-10 DOI: 10.1016/j.biortech.2024.131799
Yuliang Zhu , Dong Li , Ben Ma , Huiping Zeng , Jie Zhang
{"title":"Deciphering key microbes and their interactions within anaerobic ammonia oxidation systems","authors":"Yuliang Zhu ,&nbsp;Dong Li ,&nbsp;Ben Ma ,&nbsp;Huiping Zeng ,&nbsp;Jie Zhang","doi":"10.1016/j.biortech.2024.131799","DOIUrl":"10.1016/j.biortech.2024.131799","url":null,"abstract":"<div><div>The stability of anaerobic ammonium oxidation (anammox) performance is inseparably linked to the dynamic equilibrium of microbial interactions. However, understanding of the key microbes within anammox systems remains limited. Through the analysis of 186 16S rRNA datasets combined with various ecological analysis methods, this study identified key microbes in the anammox process. Interactions between <em>Candidatus_Kuenenia</em> and other key microbes are the most significant with greater tolerance to differing water quality, while <em>Candidatus_Jettenia</em> have higher habitat specificity. Under adverse conditions, anammox bacteria can reduce the impact of unfavorable environments by enhancing interactions with certain microbes. This study comprehensively reviews the main functions of key microbes in the anammox system and their interactions, and summarizes several common interaction mechanisms, providing new insights for understanding the startup and stable operation of the anammox process.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131799"},"PeriodicalIF":9.7,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrothermal-mediated in-situ nitrogen doping to prepare biochar for enhancing oxygen reduction reactions in microbial fuel cells 水热法原位掺氮制备生物炭,用于增强微生物燃料电池中的氧还原反应。
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-10 DOI: 10.1016/j.biortech.2024.131789
Shiteng Tan , Ruikun Wang , Jialiang Dong , Kai Zhang , Zhenghui Zhao , Qianqian Yin , Jingwei Liu , Weijie Yang , Jun Cheng
{"title":"Hydrothermal-mediated in-situ nitrogen doping to prepare biochar for enhancing oxygen reduction reactions in microbial fuel cells","authors":"Shiteng Tan ,&nbsp;Ruikun Wang ,&nbsp;Jialiang Dong ,&nbsp;Kai Zhang ,&nbsp;Zhenghui Zhao ,&nbsp;Qianqian Yin ,&nbsp;Jingwei Liu ,&nbsp;Weijie Yang ,&nbsp;Jun Cheng","doi":"10.1016/j.biortech.2024.131789","DOIUrl":"10.1016/j.biortech.2024.131789","url":null,"abstract":"<div><div>Nitrogen-doped carbon materials are deemed promising cathode catalysts for microbial fuel cells (MFCs). The challenge lies in reducing costs and enhancing the proportion of electrocatalytically active nitrogenous functional groups. This study proposes a hydrothermal-mediated in-situ doping method to produce nitrogen-doped biochar from aquatic plants. The nitrogen atoms are anchored in the carbon structure during hydrothermal treatment. Subsequent pyrolysis converts the hydrochar into a catalyst with highly catalytically active aromatic ring structure (HC-N+PY). The as-prepared HC-N+PY electrocatalyst demonstrates superior oxygen reduction reaction activity with half-wave potentials of 0.82 V. The MFC with HC-N+PY exhibits excellent performance, with a peak power density of 1444 mW/m<sup>2</sup>. Theoretical calculations demonstrate that the synergistic effect of graphitic nitrogen and C–O groups at defect sites enhances O<sub>2</sub> adsorption and protonation. This work highlights the potential of utilizing nitrogen-doped biochar derived from aquatic plants as an effective catalyst for enhancing the performance of microbial fuel cells.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131789"},"PeriodicalIF":9.7,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing diurnal dynamics: Understanding the influence of light–dark cycle on algal-bacterial symbiotic system under aniline stress 利用昼夜动态:了解苯胺胁迫下光暗周期对藻类-细菌共生系统的影响。
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-10 DOI: 10.1016/j.biortech.2024.131796
Qi He , Qian Zhang , Meng Li , Jing He , Bing Lin , Nan-Ping Wu , Jia-Jing Chen , Xun-Hao Liu , Xiao-Qian Dong
{"title":"Harnessing diurnal dynamics: Understanding the influence of light–dark cycle on algal-bacterial symbiotic system under aniline stress","authors":"Qi He ,&nbsp;Qian Zhang ,&nbsp;Meng Li ,&nbsp;Jing He ,&nbsp;Bing Lin ,&nbsp;Nan-Ping Wu ,&nbsp;Jia-Jing Chen ,&nbsp;Xun-Hao Liu ,&nbsp;Xiao-Qian Dong","doi":"10.1016/j.biortech.2024.131796","DOIUrl":"10.1016/j.biortech.2024.131796","url":null,"abstract":"<div><div>To assess the inherent effects of light–dark cycle on the aniline degradation and nitrogen removal in algal-bacterial symbiotic system, three groups with different photoperiods (0L:12D;6L:6D;12L:0D) were set up. The results revealed that the aniline degradation rate of the three systems all surpassed 99 %, the total nitrogen removal rate of Z2-6L:6D was approximately 36 % higher than Z1-0L:12D eventually, the Z1-0L:12D was restrained by NH<sub>4</sub><sup>+</sup>-N assimilation and nitrification while anoxic denitrification in Z3-12L:0D. The disappearance of microalgae biomass was accompanied by the sharp decreased of polysaccharide in Z1 and longer illumination suppressed the secretion of extracellular polymeric substances, the Z3 yielded slightly superior biomass production despite the double illumination compared with Z2. Moreover, high throughput sequencing analysis illustrated that the microbial community structure in Z2 was more abundant and even than Z3, the <em>TM7a</em>, <em>norank_f__norank_o__Saccharimonadales</em>, <em>Ellin6067</em> and <em>Scenedesmus</em> proliferated wildly and the photoinhibition to functional genus was effectively alleviated in Z2.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131796"},"PeriodicalIF":9.7,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the dead zone on anammox system in biofilters 解密生物滤池中的anammox系统死区。
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-10 DOI: 10.1016/j.biortech.2024.131784
Yanjun Zhu , Dong Li , Jie Zhang
{"title":"Deciphering the dead zone on anammox system in biofilters","authors":"Yanjun Zhu ,&nbsp;Dong Li ,&nbsp;Jie Zhang","doi":"10.1016/j.biortech.2024.131784","DOIUrl":"10.1016/j.biortech.2024.131784","url":null,"abstract":"<div><div>In an anammox biofilm reactor, long-term operation inevitably leads to the repeated formation of localized dead zones. Once these dead zones (DZs) occur, the anammox reactor’s nitrogen removal efficiency is severely reduced. However, the mechanisms and intrinsic reasons for the transformation of DZs remain unexplored. In this study, the pilot-scale biofilters were classified into biologically active zones (BZs), transition zones (TZs), and DZs. The results indicated that microbial communities undergo accelerated succession from the TZ. Biofilms respond to environmental stress from the DZs by altering the levels of signaling molecules, triggering a series of cascading reactions. These reactions alter the abundance of genes involved in nitrogen removal, promote substance transformation, and speed up the succession of microbial communities. This study demonstrates the objectives and self-healing mechanisms of the anammox biofilm process in the presence of dead zones, which could support the long-term application of anammox technology.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131784"},"PeriodicalIF":9.7,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving efficient anammox contribution and the enrichment of functional bacteria in partial denitrification/anammox system: Performance, microbial evolution and correlation analysis 在部分反硝化/氨氧化系统中实现有效的氨氧化贡献和功能菌的富集:性能、微生物进化和相关性分析。
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-09 DOI: 10.1016/j.biortech.2024.131792
Zilong Hou , Wenyi Dong , Yanchen Li , Shuo Chen , Huaguang Liu , Qi Han , Zilong Zhao , Jie Liu , Liang Zhang , Hongjie Wang , Yongzhen Peng
{"title":"Achieving efficient anammox contribution and the enrichment of functional bacteria in partial denitrification/anammox system: Performance, microbial evolution and correlation analysis","authors":"Zilong Hou ,&nbsp;Wenyi Dong ,&nbsp;Yanchen Li ,&nbsp;Shuo Chen ,&nbsp;Huaguang Liu ,&nbsp;Qi Han ,&nbsp;Zilong Zhao ,&nbsp;Jie Liu ,&nbsp;Liang Zhang ,&nbsp;Hongjie Wang ,&nbsp;Yongzhen Peng","doi":"10.1016/j.biortech.2024.131792","DOIUrl":"10.1016/j.biortech.2024.131792","url":null,"abstract":"<div><div>The primary challenge of applying partial denitrification/anammox (PD/A) to municipal wastewater treatment lied in the enrichment of functional bacteria with a considerable autotrophic nitrogen removal performance. The results showed influent NO<sub>3</sub><sup>−</sup>-N: NH<sub>4</sub><sup>+</sup>-N, reaction time and temperature would influence anammox nitrogen removal contribution. <sup>15</sup>N isotopic tracing technology further revealed the average anammox contribution rate was up to 94.8 %. Extending reaction time was an effective measure to improve simultaneously PD and anammox activity. Microbial community indicated partial denitrifying bacteria (<em>Bacillus</em>) and anammox bacteria (<em>Candidatus Brocadia</em>) were enriched with abundance of 27.27 % and 7.09 % at NO<sub>3</sub><sup>−</sup>-N: NH<sub>4</sub><sup>+</sup>-N of 1:1. The correlation analysis showed that NO<sub>3</sub><sup>−</sup>-N: NH<sub>4</sub><sup>+</sup>-N ratio played the positive role for <em>Bacillus</em> enrichment, and low temperature was favorable to the enrichment of <em>Thauera</em> and <em>Candidatus Jettenia</em>. Overall, this study demonstrated the reasonable operational strategy would strengthen anammox contribution and facilitate enrichment of functional bacteria.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131792"},"PeriodicalIF":9.7,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degradation behaviors of asphalt by microorganisms in asphalt pavement structure 沥青路面结构中微生物对沥青的降解行为。
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-09 DOI: 10.1016/j.biortech.2024.131793
Ding Ma, Lisha Shi, Qiangqiang Xia, Tao Xu
{"title":"Degradation behaviors of asphalt by microorganisms in asphalt pavement structure","authors":"Ding Ma,&nbsp;Lisha Shi,&nbsp;Qiangqiang Xia,&nbsp;Tao Xu","doi":"10.1016/j.biortech.2024.131793","DOIUrl":"10.1016/j.biortech.2024.131793","url":null,"abstract":"<div><div><em>Pseudomonas</em> and <em>Bacillus</em> are dominant microorganisms to widely distributes in asphalt pavement structure. Microbial degradation leads to asphalt aging, and causes its performance deterioration, reducing the durability of asphalt pavement. To better understand the degradation behaviors of dominant microorganisms on asphalt, and reveals their microbial aging mechanisms on asphalt, the effects of microbial degradation on micromorphology, chemical functional group, component and microstructure of asphalt were discussed. Results indicate that main damages of microbial degradation start from asphalt surface and then permeates into its interior. Microorganisms degrade light components of asphalt as nutrients and decompose them into CO<sub>2</sub> and H<sub>2</sub>O through oxidation reactions, but exhibit limited degradation ability to macromolecular components. Microbial degradation causes the content changes of asphalt components, altering the colloidal structure of asphalt. Microorganisms destroy the continuity of asphalt surface and increase surface roughness of asphalt. This study provides a new insight into microbial aging mechanism of asphalt.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131793"},"PeriodicalIF":9.7,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorization and repurposing of seafood waste to next-generation carbon nanofertilizers 海产品废弃物的价值评估和再利用:下一代碳纳米肥料。
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-09 DOI: 10.1016/j.biortech.2024.131783
Rabia Javed , Uzma Sharafat , Ayesha Rathnayake , Lakshman Galagedara , Gurpreet Singh Selopal , Raymond Thomas , Mumtaz Cheema
{"title":"Valorization and repurposing of seafood waste to next-generation carbon nanofertilizers","authors":"Rabia Javed ,&nbsp;Uzma Sharafat ,&nbsp;Ayesha Rathnayake ,&nbsp;Lakshman Galagedara ,&nbsp;Gurpreet Singh Selopal ,&nbsp;Raymond Thomas ,&nbsp;Mumtaz Cheema","doi":"10.1016/j.biortech.2024.131783","DOIUrl":"10.1016/j.biortech.2024.131783","url":null,"abstract":"<div><div>The surge in population growth, urbanization, and shifts in food consumption patterns have resulted in a rise in the global production of organic waste. This waste material must be repurposed and effectively managed to minimize environmental footprints. The generation of abundant biowaste, especially from marine sources, may have detrimental impacts on the environment and human health if left untreated. In recent years, substantial efforts have been made to valorize seafood waste, contributing significantly to the sustainability of the blue economy through the repurposing of marine discards. Seafood waste can be transformed into different by-products which can be applied as soil amendment to enhance soil quality and health, demonstrating a holistic approach to repurposing and waste utilization. The extraction of bioactive metabolites from these waste materials has opened avenues for developing nanofertilizers. This intersection of waste valorization and nanotechnology is pertinent in the context of sustainable agriculture. While conventional fertilizers improve soil fertility with significant leaching and gaseous losses, the advent of nanofertilizers introduces a paradigm shift with their targeted and controlled delivery mechanisms, rendering them significantly more efficient in resource utilization and mitigation of environmental crises. This review delves into the global issue of seafood waste accumulation, offering an overview of various methods for repurposing. The primary aim of this review is to bring into limelight the recent efforts in developing a portfolio of carbon-based nanofertilizers derived from organic waste, replacing previous valorization methods due to their sustainability, efficiency, and eco-friendliness. There are immense opportunities for future work in this direction by exploring innovative nanoengineering approach owing to the potential of carbon nanofertilizers in enhancing the production of value-added products and reduction of environmental pollution.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131783"},"PeriodicalIF":9.7,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term effects of cycle time and volume exchange ratio on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from food waste digestate by Haloferax mediterranei cultivated in sequencing batch reactors for 450 days 循环时间和体积交换比对在序批式反应器中培养 Haloferax mediterranei 450 天后从厨余消化物中生产聚(3-羟基丁酸-3-羟基戊酸)的长期影响。
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-09 DOI: 10.1016/j.biortech.2024.131771
Xueyao Zhang , Zhaohui An , Jiefu Wang , Stephanie Lansing , Naresh Kumar Amradi , Md. Sazzadul Haque , Zhi-Wu Wang
{"title":"Long-term effects of cycle time and volume exchange ratio on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from food waste digestate by Haloferax mediterranei cultivated in sequencing batch reactors for 450 days","authors":"Xueyao Zhang ,&nbsp;Zhaohui An ,&nbsp;Jiefu Wang ,&nbsp;Stephanie Lansing ,&nbsp;Naresh Kumar Amradi ,&nbsp;Md. Sazzadul Haque ,&nbsp;Zhi-Wu Wang","doi":"10.1016/j.biortech.2024.131771","DOIUrl":"10.1016/j.biortech.2024.131771","url":null,"abstract":"<div><div>Food waste<!--> <!-->digestate<!--> <!-->was fed into a sequencing batch reactor (SBR) for<!--> <em>Haloferax mediterranei</em> <!-->(<em>HM</em>) to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). This SBR was operated uninterruptedly for 450 days to test its stability, during which the cycle time and volume exchange ratio<!--> <!-->were varied to understand their impacts on the PHBV fermentation performance under ranged organic loading rates (OLR). Results showed that 1) PHBV productivity was proportional to OLR of food waste<!--> <!-->digestate; 2) substrate and product inhibitions were two limiting factors constraining substrate utilization and PHBV yields; 3) PHBV titer was dependent on the hydraulic retention time of the SBR while a volume exchange ratio lower than 0.5 is unfavorable due to the product inhibitor accumulation. This study for the first time demonstrated that the long-term stability of food waste-fed PHBV production by<!--> <em>HM</em> <!-->and revealed that inhibition effects could be barriers in SBR limiting the full-scale application of the technology.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131771"},"PeriodicalIF":9.7,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virus-prokaryote interactions assist pollutant removal in constructed wetlands 病毒与原核生物之间的相互作用有助于清除人工湿地中的污染物。
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-09 DOI: 10.1016/j.biortech.2024.131791
Nan Zhang , Dong Zhu , Zhiyuan Yao , David Z. Zhu
{"title":"Virus-prokaryote interactions assist pollutant removal in constructed wetlands","authors":"Nan Zhang ,&nbsp;Dong Zhu ,&nbsp;Zhiyuan Yao ,&nbsp;David Z. Zhu","doi":"10.1016/j.biortech.2024.131791","DOIUrl":"10.1016/j.biortech.2024.131791","url":null,"abstract":"<div><div>As a vital part of microbial communities, viruses in constructed wetlands (CWs) remain poorly explored, yet they could significantly affect pollutant removal. Here, two pilot-scale CWs were built to investigate the viral community under different hydraulic loading rates (HLRs) using in-depth metagenomic analysis. Gene-sharing networks suggested that the CWs were pools of unexplored viruses. A higher abundance of prokaryotic functional genes related to sulfur cycling and denitrification was observed in the higher HLR condition, which was associated with greater removal of total nitrogen and nitrate nitrogen compared to the lower HLR condition. Viruses also affect nitrogen pollutant removal by potentially infecting functional prokaryotes, such as denitrification bacteria and ammonia-oxidizing bacteria, and by providing auxiliary metabolic genes involved in sulfur and nitrogen cycling. These findings reveal the significance of viruses in pollutant removal in CWs and enhance the understanding of the relationship between engineering design parameters and performance from microbial perspectives.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131791"},"PeriodicalIF":9.7,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alternative feedstocks for sustainable aviation fuels: Assessment of sugarcane-derived microbial oil 可持续航空燃料的替代原料:评估甘蔗衍生微生物油。
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-09 DOI: 10.1016/j.biortech.2024.131772
Andressa Neves Marchesan, Isabelle Lobo de Mesquita Sampaio, Mateus Ferreira Chagas, Wesley Cardoso Generoso, Thayse Aparecida Dourado Hernandes, Edvaldo Rodrigo Morais, Tassia Lopes Junqueira
{"title":"Alternative feedstocks for sustainable aviation fuels: Assessment of sugarcane-derived microbial oil","authors":"Andressa Neves Marchesan,&nbsp;Isabelle Lobo de Mesquita Sampaio,&nbsp;Mateus Ferreira Chagas,&nbsp;Wesley Cardoso Generoso,&nbsp;Thayse Aparecida Dourado Hernandes,&nbsp;Edvaldo Rodrigo Morais,&nbsp;Tassia Lopes Junqueira","doi":"10.1016/j.biortech.2024.131772","DOIUrl":"10.1016/j.biortech.2024.131772","url":null,"abstract":"<div><div>Pioneer facilities for Sustainable Aviation Fuels (SAF) convert fats, oils, and grease into hydrocarbons using the Hydroprocessed Esters and Fatty Acids (HEFA) technology. However, limited feedstock availability and sustainability concerns may restrict broader adoption. Biotechnology offers an alternative by enabling microbial oil production from sugars, expanding the feedstock portfolio with more productive biomass sources or waste materials. This study assessed the economic and environmental impacts of SAF production through HEFA using microbial oil from sugarcane, combining achievable fermentation performance with mature catalytic conversion. The results demonstrated SAF costs between $1.83 and $3.00 per liter and over 50 % reduction in greenhouse gas emissions compared to fossil fuels. Sensitivity analysis identified fermentation performance as the key factor driving these outcomes. Additionally, this approach yielded higher SAF per hectare than soybean-oil-based HEFA, potentially reducing emissions from land-use change.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131772"},"PeriodicalIF":9.7,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信