{"title":"Fiber-shaped artificial tissue with microvascular networks for bottom-up tissue reconstruction","authors":"R. Sato, H. Onoe","doi":"10.1109/MEMSYS.2017.7863387","DOIUrl":"https://doi.org/10.1109/MEMSYS.2017.7863387","url":null,"abstract":"This paper describes a fiber-shaped microscale tissue with blood vessel networks. We co-cultured Hep-G2 (Human hepatic epithelial cell line) and HUVEC (human umbilical endothelial cell) in a collagen/alginate core-shell hydrogel microfiber fabricated by using a microfluidic device. We observed difference in construction of blood vessel networks in the hepatic tissue by varying in the ratio of co-cultured cells and the diameter of the core. In addition, by arranging the fiber-shaped tissues to construct macroscale tissue assembly, we confirmed the connection of blood vessel networks between the assembled fiber-shaped tissues.","PeriodicalId":257460,"journal":{"name":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114228428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuji Nashimoto, Itsuki Kunita, Akiko M. Nakamasu, Y. Torisawa, Masamune Nakayama, H. Kotera, Koichi Nishiyama, T. Miura, R. Yokokawa
{"title":"Engineering a three-dimensional tissue model with a perfusable vasculature in a microfluidic device","authors":"Yuji Nashimoto, Itsuki Kunita, Akiko M. Nakamasu, Y. Torisawa, Masamune Nakayama, H. Kotera, Koichi Nishiyama, T. Miura, R. Yokokawa","doi":"10.1109/MEMSYS.2017.7863476","DOIUrl":"https://doi.org/10.1109/MEMSYS.2017.7863476","url":null,"abstract":"In this study, we developed a microfluidic platform for a three-dimensional tissue model with a perfusable capillary network, which will allow, for the first time, a perfusion-culture in a tissue model with a high cell density. Our group previously reported that a spheroid of lung fibroblasts induced angiogenic sprouts from microchannels [1]. In this study, we successfully connected angiogenic sprouts to the vessel-like hollow structure in a spheroid and perfused the formed vascular network through microfluidic channels to the spheroid. This model opens up new techniques for tissue-culture for long-term.","PeriodicalId":257460,"journal":{"name":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127367322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Triboelectric energy harvester using frequency up-conversion to generate from extremely low frequency strain inputs","authors":"H. Ko, D. Kwon, Jongbaeg Kim","doi":"10.1109/MEMSYS.2017.7863545","DOIUrl":"https://doi.org/10.1109/MEMSYS.2017.7863545","url":null,"abstract":"We developed a flexible triboelectric energy harvester that can generate from extremely low frequency strain inputs. The harvester consists of flexible substrate, cantilever, sagged film which is partially bonded beneath the cantilever and permanent magnets. When the cantilever is deformed, contact and separation motion between the cantilever and sagged film occurs and it makes electricity by triboelectric effect. By adopting frequency up-conversion mechanism, the cantilever vibrates at its natural frequency and it makes higher output power by fast contact and separation. The peak-to-peak and RMS output power were 267.38 μW and 0.20 μW for a resistive load of 2 MΩ at 0.5 Hz strain input, respectively.","PeriodicalId":257460,"journal":{"name":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126731704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunsung Kang, Han-Il Jung, D. Baek, Kyounghoon Lee, S. Pyo, Jongbaeg Kim
{"title":"Highly sensitive detection of VOC using impact ionization induced by photoelectron","authors":"Yunsung Kang, Han-Il Jung, D. Baek, Kyounghoon Lee, S. Pyo, Jongbaeg Kim","doi":"10.1109/MEMSYS.2017.7863371","DOIUrl":"https://doi.org/10.1109/MEMSYS.2017.7863371","url":null,"abstract":"We have developed a highly sensitive volatile organic compounds (VOCs) sensor using impact ionization induced by photoelectron. A novel mechanism of VOC detection, the screening effect of VOC cations, was proposed and experimentally verified for the first time. The fabricated sensor could detect various concentrations of toluene ranging from 500 down to 10 ppm under long wavelength of UV light (254 nm) illumination. In addition, reliable and repeatable sensing characteristics were obtained at the exposure to ethylene with high ionization energy.","PeriodicalId":257460,"journal":{"name":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120940239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Xu, Bo Gao, Moaaz Ahmed, Mingzheng Duan, Bo Wang, Saqib Mohamad, A. Bermak, Yi-Kuen Lee
{"title":"A wafer-level encapsulated CMOS MEMS thermoresistive calorimetric flow sensor with integrated packaging design","authors":"Wei Xu, Bo Gao, Moaaz Ahmed, Mingzheng Duan, Bo Wang, Saqib Mohamad, A. Bermak, Yi-Kuen Lee","doi":"10.1109/MEMSYS.2017.7863577","DOIUrl":"https://doi.org/10.1109/MEMSYS.2017.7863577","url":null,"abstract":"In this paper, we presented a wafer-level encapsulated Thermoresistive Micro Calorimetric Flow (TMCF) sensor with the integrated packaging by using the proprietary InvenSense CMOS MEMS technology. For the nitrogen gas flow from −26m/s to 26m/s, the pulsed operated TMCF sensor (device size = 3.4mm2) under the Constant Temperature Difference (CTD) mode achieved a normalized sensitivity of 112.4μV/(m/s)/mW with respect to the input heating power. Besides, the measured TMCF sensor response time (τmax<3.63ms) shows good agreement with a theoretical model. With the pulsed operation, the proposed low-power TMCF sensor will be a promising digital CMOS MEMS flow sensor for the Internet of Things (IoT), especially for smart building/home.","PeriodicalId":257460,"journal":{"name":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115042881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Patterning high aspect silicon pillars on cantilever by metal assisted chemical etching for humidity sensing","authors":"Nguyen Van Toan, M. Toda, T. Hokama, T. Ono","doi":"10.1109/MEMSYS.2017.7863639","DOIUrl":"https://doi.org/10.1109/MEMSYS.2017.7863639","url":null,"abstract":"Pillars formed by metal assisted chemical etching (MACE) process as a post process on a silicon cantilever are presented in this work. Although the cantilever is very fragile, the patterning of the pillar structures on the cantilever have been successfully demonstrated. The high aspect silicon pillar structures from 20 to 40 with smooth surfaces and vertically etched shapes on the cantilever are formed by MACE. In addition, silicon cantilever with high aspect ratio pillars on its surface is proposed for humidity sensing application. The humidity sensing utilize the principle that the pillars stack together based upon the condensation behavior of water vapor on their surfaces.","PeriodicalId":257460,"journal":{"name":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128283974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. De Luca, S. Z. Ali, R. Hopper, S. Boual, J. Gardner, F. Udrea
{"title":"Filterless non-dispersive infra-red gas detection: A proof of concept","authors":"A. De Luca, S. Z. Ali, R. Hopper, S. Boual, J. Gardner, F. Udrea","doi":"10.1109/MEMSYS.2017.7863636","DOIUrl":"https://doi.org/10.1109/MEMSYS.2017.7863636","url":null,"abstract":"For the first time, we demonstrate the detection of carbon dioxide (CO2) using a non-dispersive infra-red (NDIR) technique that does not require an expensive CMOS-incompatible optical filter. This is achieved by employing a differential IR thermopile detector with micro-engineered (plasmonic) optical properties, fabricated in a commercially available standard CMOS MEMS process. The proof of concept demonstrated here represents a milestone in low-cost gas sensing spectroscopy, and has the potential to impact profoundly in the entire IR field; many consumer electronics applications (wearables, smartphones, tablets and portable medical devices) will become viable, leading to high volume commercial applications for plasmonic devices.","PeriodicalId":257460,"journal":{"name":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130090283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low-voltage and low-power field-ionization gas sensor based on micro-gap between suspended silver nanowires electrodes for toluene detection","authors":"Han-Il Jung, S. Pyo, Jongbaeg Kim","doi":"10.1109/MEMSYS.2017.7863374","DOIUrl":"https://doi.org/10.1109/MEMSYS.2017.7863374","url":null,"abstract":"We have demonstrated field-ionization gas sensor using suspended silver nanowires as electrodes. The tight gap of 1.5 μm between two facing sets of suspended in-plane nanowires on top of silicon microelectrodes, as well as the sharp protrusion of nanowires, allows the generation of high and non-uniform electric field. This produces field emission of electrons that result in ionization of gas molecules at a very low voltage applied. The fabricated sensor could detect toluene at 1.5 V of operational voltage, which is 10 times lower than the existing ionization gas sensors. Resultantly, extremely low power consumption of 75 nW for toluene sensing is also achieved, which implies the proposed field-ionization gas sensor could be a strong candidate for mobile device application.","PeriodicalId":257460,"journal":{"name":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130404078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"5 Ghz lithium niobate MEMS resonators with high FoM of 153","authors":"Yansong Yang, A. Gao, Ruochen Lu, S. Gong","doi":"10.1109/MEMSYS.2017.7863565","DOIUrl":"https://doi.org/10.1109/MEMSYS.2017.7863565","url":null,"abstract":"This paper reports on the demonstration of a new class of super-high frequency (SHF) microelectromechanical system (MEMS) resonators operating in the 5 GHz range. SHF resonances have been achieved using the first order antisymmetric (A1) mode, which features a phase velocity exceeding 10000 m/s in ion-sliced and suspended Z-cut Lithium Nio-bate (LiNbO3) thin films. The fabricated device has demonstrated a high electromechanical coupling (kt2) of 29% and a high quality factor (Q) of 527 simultaneously. Consequently, this work marks the first time that MEMS resonators at SHF were demonstrated with an extremely high figure of merit (FoM= kt2Q) of 153. The SHF operation and high FoM of these A1 mode devices have showcased their potential as the key building blocks for future SHF front-end filters and multiplexers.","PeriodicalId":257460,"journal":{"name":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127081373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaonan Yang, Zhuofa Chen, G. Choi, J. Miao, L. Cui, W. Guan
{"title":"High-throughput and label-free parasitemia quantification and stage determination for plasmodium falciparum-infected red blood cells","authors":"Xiaonan Yang, Zhuofa Chen, G. Choi, J. Miao, L. Cui, W. Guan","doi":"10.1109/MEMSYS.2017.7863579","DOIUrl":"https://doi.org/10.1109/MEMSYS.2017.7863579","url":null,"abstract":"This work reports a high throughput and label-free cell deformability microfluidic sensor for quantitative parasitemia measurement and stage determination for Plasmodium falciparum-infected red blood cells (Pf-iRBCs). As a mechanical biomarker, the RBC deformability is highly relevant to the infection status. The cell deformability is measured by evaluating the translocation time when each individual cell squeezes through a microscale constriction. More than 30,000 RBCs can be analyzed for parasitemia quantification in under 1 min with a throughput ∼500 cells/s. Moreover, the device can also differentiate various malaria stages (ring, trophozoite, and schizont stage) due to their varied deformability. As compared to the microscopy and flow cytometry, this microfluidic deformability sensor would allow for label-free and rapid malaria parasitemia quantification and stage determination at a low-cost.","PeriodicalId":257460,"journal":{"name":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127843198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}