Xiaonan Yang, Zhuofa Chen, G. Choi, J. Miao, L. Cui, W. Guan
{"title":"恶性疟原虫感染红细胞的高通量和无标记寄生虫血症定量和分期测定","authors":"Xiaonan Yang, Zhuofa Chen, G. Choi, J. Miao, L. Cui, W. Guan","doi":"10.1109/MEMSYS.2017.7863579","DOIUrl":null,"url":null,"abstract":"This work reports a high throughput and label-free cell deformability microfluidic sensor for quantitative parasitemia measurement and stage determination for Plasmodium falciparum-infected red blood cells (Pf-iRBCs). As a mechanical biomarker, the RBC deformability is highly relevant to the infection status. The cell deformability is measured by evaluating the translocation time when each individual cell squeezes through a microscale constriction. More than 30,000 RBCs can be analyzed for parasitemia quantification in under 1 min with a throughput ∼500 cells/s. Moreover, the device can also differentiate various malaria stages (ring, trophozoite, and schizont stage) due to their varied deformability. As compared to the microscopy and flow cytometry, this microfluidic deformability sensor would allow for label-free and rapid malaria parasitemia quantification and stage determination at a low-cost.","PeriodicalId":257460,"journal":{"name":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput and label-free parasitemia quantification and stage determination for plasmodium falciparum-infected red blood cells\",\"authors\":\"Xiaonan Yang, Zhuofa Chen, G. Choi, J. Miao, L. Cui, W. Guan\",\"doi\":\"10.1109/MEMSYS.2017.7863579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work reports a high throughput and label-free cell deformability microfluidic sensor for quantitative parasitemia measurement and stage determination for Plasmodium falciparum-infected red blood cells (Pf-iRBCs). As a mechanical biomarker, the RBC deformability is highly relevant to the infection status. The cell deformability is measured by evaluating the translocation time when each individual cell squeezes through a microscale constriction. More than 30,000 RBCs can be analyzed for parasitemia quantification in under 1 min with a throughput ∼500 cells/s. Moreover, the device can also differentiate various malaria stages (ring, trophozoite, and schizont stage) due to their varied deformability. As compared to the microscopy and flow cytometry, this microfluidic deformability sensor would allow for label-free and rapid malaria parasitemia quantification and stage determination at a low-cost.\",\"PeriodicalId\":257460,\"journal\":{\"name\":\"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2017.7863579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2017.7863579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-throughput and label-free parasitemia quantification and stage determination for plasmodium falciparum-infected red blood cells
This work reports a high throughput and label-free cell deformability microfluidic sensor for quantitative parasitemia measurement and stage determination for Plasmodium falciparum-infected red blood cells (Pf-iRBCs). As a mechanical biomarker, the RBC deformability is highly relevant to the infection status. The cell deformability is measured by evaluating the translocation time when each individual cell squeezes through a microscale constriction. More than 30,000 RBCs can be analyzed for parasitemia quantification in under 1 min with a throughput ∼500 cells/s. Moreover, the device can also differentiate various malaria stages (ring, trophozoite, and schizont stage) due to their varied deformability. As compared to the microscopy and flow cytometry, this microfluidic deformability sensor would allow for label-free and rapid malaria parasitemia quantification and stage determination at a low-cost.