Bioelectrochemistry最新文献

筛选
英文 中文
Modelling enzyme electrodes – What do we learn and how is it useful? 酶电极建模-我们学到了什么?它如何有用?
IF 4.8 2区 化学
Bioelectrochemistry Pub Date : 2025-02-22 DOI: 10.1016/j.bioelechem.2025.108941
Philip N. Bartlett, M. Hashim Khan
{"title":"Modelling enzyme electrodes – What do we learn and how is it useful?","authors":"Philip N. Bartlett,&nbsp;M. Hashim Khan","doi":"10.1016/j.bioelechem.2025.108941","DOIUrl":"10.1016/j.bioelechem.2025.108941","url":null,"abstract":"<div><div>There has been an enormous increase in the computational power readily available since the first numerical treatments of electrochemical problems in the early 1960s. This development has been accompanied by the development of powerful, widely available, commercial software modelling tools. Despite this, approximate analytical treatments remain extremely useful in the modelling of coupled diffusion/reaction problems in electrochemistry because of the insights they provide into the different possible behaviours of the system. In this paper we discuss the modelling of amperometric enzyme electrodes, taking as our exemplar redox hydrogel-based enzyme electrodes in which the enzyme is immobilized in a redox active polymer which wires the enzyme to the electrode. In this system the measured current is related to many different experimental variables including substrate concentration and diffusion coefficient, reaction rate constants, and film properties and thickness. The interplay of these factors is described and the role of Case diagrams in understanding coupled diffusion/reaction problems of this type is discussed.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"165 ","pages":"Article 108941"},"PeriodicalIF":4.8,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143508786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical Behavior of Glassy Carbon Electrodes Modified with Electropolymerized Film of N,N′-bis (2-thienylmethylene)-1,X-diaminobenzene toward Homovanillic Acid and 4-Hydroxyphenylacetic Acid N,N ' -双(2-噻基亚甲基)-1,x -二氨基苯电聚合膜修饰玻碳电极对纯香草酸和4-羟基苯乙酸的电化学行为
IF 4.8 2区 化学
Bioelectrochemistry Pub Date : 2025-02-21 DOI: 10.1016/j.bioelechem.2025.108944
Parastoo Vahdatiyekta , Ville Yrjänä , Emil Rosqvist , Xavier Cetó , Manel del Valle , Tan-Phat Huynh
{"title":"Electrochemical Behavior of Glassy Carbon Electrodes Modified with Electropolymerized Film of N,N′-bis (2-thienylmethylene)-1,X-diaminobenzene toward Homovanillic Acid and 4-Hydroxyphenylacetic Acid","authors":"Parastoo Vahdatiyekta ,&nbsp;Ville Yrjänä ,&nbsp;Emil Rosqvist ,&nbsp;Xavier Cetó ,&nbsp;Manel del Valle ,&nbsp;Tan-Phat Huynh","doi":"10.1016/j.bioelechem.2025.108944","DOIUrl":"10.1016/j.bioelechem.2025.108944","url":null,"abstract":"<div><div>This study evaluates different electrochemical behaviors of modified glassy carbon electrodes (GCEs) for detecting urinary biomarkers related to breast cancer, namely homovanillic acid (HVA) and 4-hydroxyphenylacetic acid (4HPA). The analysis was performed in the presence of common urinary interferents, creatinine and urea. Modification of bare GCEs was done through the electropolymerization of <em>N,N′-</em>bis (2-thienylmethylene)-1<em>,X-</em>diaminobenzene (<em>X =</em> 2, 3, 4) isomers, so-called BTMD. The formation and characteristics of these polymeric layers were investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). Differential pulse voltammetry (DPV) was used to measure responses of the electrodes  to HVA and 4HPA, assessing their sensitivity and selectivity. Results showed that the developed electrodes effectively detected both biomarkers, with peak currents increasing proportionally to biomarker concentrations and minimal interference from creatinine and urea. The modified electrodes exhibited better linearity at higher concentrations; however, saturation was observed for 4HPA at high concentrations with the <em>p</em>-BTMD/GCE. Each electrode displayed unique peak current, potential, and response profiles, highlighting their promise for cross-reactive sensing systems, such as electronic tongues, to analyze complex matrices such as urine.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"165 ","pages":"Article 108944"},"PeriodicalIF":4.8,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The electrochemical properties of the highly diverse terminal oxidases from different organisms 来自不同生物的不同末端氧化酶的电化学性质
IF 4.8 2区 化学
Bioelectrochemistry Pub Date : 2025-02-21 DOI: 10.1016/j.bioelechem.2025.108946
Petra Hellwig
{"title":"The electrochemical properties of the highly diverse terminal oxidases from different organisms","authors":"Petra Hellwig","doi":"10.1016/j.bioelechem.2025.108946","DOIUrl":"10.1016/j.bioelechem.2025.108946","url":null,"abstract":"<div><div>Terminal oxidases are critical for aerobic respiratory chains of prokaryotes and eukaryotes, responsible for the final step in the electron transport chain. These enzymes catalyze the transfer of electrons from reduced electron carriers (such as cytochrome <em>c</em> or quinols) to the terminal electron acceptor, molecular oxygen (O₂), thereby reducing it to water. They play a pivotal role in aerobic respiration and energy metabolism, adapting to diverse environmental and physiological needs across different organisms. This review summarizes the electrochemical properties of terminal oxidases from different organisms and reveals their high degree of adaptivity with redox potentials spanning more than 500 mV. The electrocatalytic response in direct electrochemical approaches is described giving insight into the rich and complex electron and proton transfer catalysed by these essential enzymes.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"165 ","pages":"Article 108946"},"PeriodicalIF":4.8,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143508787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel label-free immunosensor for detection of VEGF using FFT admittance voltammetry 利用FFT导纳伏安法检测VEGF的新型无标记免疫传感器
IF 4.8 2区 化学
Bioelectrochemistry Pub Date : 2025-02-21 DOI: 10.1016/j.bioelechem.2025.108948
Negar Heidari , Reza Hassan Sajedi , Ali Nemati Kharat , Alireza Bonakdar , Jalil Mirzazadeh , Kianoush Kazemi Qaraei , Parviz Norouzi
{"title":"A novel label-free immunosensor for detection of VEGF using FFT admittance voltammetry","authors":"Negar Heidari ,&nbsp;Reza Hassan Sajedi ,&nbsp;Ali Nemati Kharat ,&nbsp;Alireza Bonakdar ,&nbsp;Jalil Mirzazadeh ,&nbsp;Kianoush Kazemi Qaraei ,&nbsp;Parviz Norouzi","doi":"10.1016/j.bioelechem.2025.108948","DOIUrl":"10.1016/j.bioelechem.2025.108948","url":null,"abstract":"<div><div>This study presents a novel, label-free electrochemical immunosensor for the detection of vascular endothelial growth factor (VEGF), a crucial tumor biomarker. The immunosensor was developed by electrochemical deposition of gold nanoparticles-reduced graphene oxide (AuNPs-rGO) nanocomposite on glassy carbon (GC) and screen-printed carbon (SPC) electrodes. A specific monoclonal antibody against VEGF was immobilized on the electrode surface through a carbodiimide coupling reaction. Field Emission Scanning Electron Microscopy (FE-SEM), X-ray Diffraction (XRD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) have been used to characterize the developed immunosensor. For quantitative measurement of VEGF, fast Fourier transformation admittance voltammetry was employed by applying a special potential waveform on the immunosensor and sampling the currents. The response was determined by measuring changes in the electrode admittance caused by the adsorption of VEGF molecules, without the use of a redox probe. Under optimal conditions, the immunosensor responses were within a linear detection range for VEGF from 0.1 to 10,000 pg/ml and from 10 to 10,000 pg/ml, with notably low detection limits of 29.1 fg/ml and 352 fg/ml for the modified GC and SPC electrodes, respectively. The sensor exhibits minimal interference from common serum proteins, making it a promising candidate for sensitive, low-cost commercialization.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"165 ","pages":"Article 108948"},"PeriodicalIF":4.8,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143579712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical reduction boosted Luminol cathodic electrochemiluminescence for trace chiral recognition of alanine enantiomers 电化学还原增强了鲁米诺阴极电化学发光对丙氨酸对映体的痕量手性识别
IF 4.8 2区 化学
Bioelectrochemistry Pub Date : 2025-02-19 DOI: 10.1016/j.bioelechem.2025.108945
Tingting Tian , Lixia Chen , Taiguang Li , Xiang Wang , Sen Yang , Huiqun Wang , Yujie Jiang , Xin Yao , Hong Zhao , Dengchao Wang , Xiangjun Li
{"title":"Electrochemical reduction boosted Luminol cathodic electrochemiluminescence for trace chiral recognition of alanine enantiomers","authors":"Tingting Tian ,&nbsp;Lixia Chen ,&nbsp;Taiguang Li ,&nbsp;Xiang Wang ,&nbsp;Sen Yang ,&nbsp;Huiqun Wang ,&nbsp;Yujie Jiang ,&nbsp;Xin Yao ,&nbsp;Hong Zhao ,&nbsp;Dengchao Wang ,&nbsp;Xiangjun Li","doi":"10.1016/j.bioelechem.2025.108945","DOIUrl":"10.1016/j.bioelechem.2025.108945","url":null,"abstract":"<div><div>Electrochemiluminescence (ECL) is highly recommended in chiral recognition. ECL-based chiral sensors highly desire a sensitive sensing interface for signal conversion and absolute chiral discrimination. The ECL emission based on a luminol-dissolved O<sub>2</sub> system received much attention due to its nontoxicity and stability. However, the drawback of weak ECL emission hinders the fast signal conversion from chiral discrimination to ECL response. Herein, the amplification strategy of ECL emission is proposed based on the electrochemical reduction enhanced O<sub>2</sub> reduction reaction (ORR). Cadmium sulfide decorated on carbon-nanotubes (CdS/CNTs) with easy synthesis, wide-pH operation, and suitable valence-conduction band position is employed. Upon cathodic scan, the electrons transfer from electrochemically reduced-CdS/CNTs to O<sub>2</sub> and H<sub>2</sub>O<sub>2</sub>, thus accelerating the generation of reactive oxide species (ROS) and furthering ECL emission. Furthermore, the chiral ECL sensing interface is well-designed by combining the chiral recognition of D-amino acid oxidase (DAAO) with the signal transduction and amplification of CdS/CNTs-enhanced ECL emission. During DAAO-catalyzed enantioselective-oxidations of alanine, the O<sub>2</sub> is converted to H<sub>2</sub>O<sub>2</sub>, which tunes the ROS generation. With synergetic regulations of ROS generation by nano-derived CdS/CNTs and bio-derived DAAO, alanine enantiomers are highly discriminated and the L-alanine is quantitatively detected with the most competitive detection limit so far (0.014 fM).</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"165 ","pages":"Article 108945"},"PeriodicalIF":4.8,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Charged microbeads are not transported across the human stratum corneum in vitro by short high-voltage pulses” [Bioelectrochem. Bioenerget. 48(1) (1999) 181–192] “带电微珠不会在体外通过短高压脉冲通过人体角质层传输”的勘误表[生物电化学]。生物能源,48(1)(1999)181-192。
IF 4.8 2区 化学
Bioelectrochemistry Pub Date : 2025-02-14 DOI: 10.1016/j.bioelechem.2025.108928
Tani Chen , Robert Langer , James C. Weaver
{"title":"Corrigendum to “Charged microbeads are not transported across the human stratum corneum in vitro by short high-voltage pulses” [Bioelectrochem. Bioenerget. 48(1) (1999) 181–192]","authors":"Tani Chen ,&nbsp;Robert Langer ,&nbsp;James C. Weaver","doi":"10.1016/j.bioelechem.2025.108928","DOIUrl":"10.1016/j.bioelechem.2025.108928","url":null,"abstract":"","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"164 ","pages":"Article 108928"},"PeriodicalIF":4.8,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrate pollution accelerated the microbial corrosion of Fe0: A simulated corrosion verification for understanding marine corrosion phenomenological model 硝酸盐污染加速了Fe0的微生物腐蚀:理解海洋腐蚀现象模型的模拟腐蚀验证
IF 4.8 2区 化学
Bioelectrochemistry Pub Date : 2025-02-13 DOI: 10.1016/j.bioelechem.2025.108942
Ding Guo , Jizhou Duan
{"title":"Nitrate pollution accelerated the microbial corrosion of Fe0: A simulated corrosion verification for understanding marine corrosion phenomenological model","authors":"Ding Guo ,&nbsp;Jizhou Duan","doi":"10.1016/j.bioelechem.2025.108942","DOIUrl":"10.1016/j.bioelechem.2025.108942","url":null,"abstract":"<div><div>In the seawater-sediment simulated immersion system, nitrate affected microbial corrosion of steel. The research studied the corrosion processes of Q235 steel influenced by nitrate exposure from aspects such as mineral evolution, environmental microbial cultivation, and interfacial electrochemistry. Nitrate pollution affected the corrosion acceleration (0.11 ± 0.01 mm*y<sup>−1</sup>, pit<sub>max</sub> = 21.11 μm). Severe iron corrosion might not originate from the acidification of the interface microenvironment or the bioactivity of sulfate-reducing bacteria controlled by diffusion of inorganic nitrogen in the rust layer, but rather from the microbial metabolism of nitrate-reducing bacteria. The nitrate-addition had altered the composition of the microbial community attached to the steel surface, with a significant increase in the abundance of <em>Achromobacter</em>. The attached microorganisms regulated the Fe<sup>0</sup> oxidation and the NO<sub>3</sub><sup>−</sup> reduction on the Q235 steel surface to increase the pitting corrosion sensitivity and live bacteria number. The effect of nitrate on microbial corrosion of Fe<sup>0</sup> in aerobic environment showed different understandings from the proposed corrosion phenomenological model.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"164 ","pages":"Article 108942"},"PeriodicalIF":4.8,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143438058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-invasive alcohol biosensor based on gold nanoparticles and carbon nanotubes network for dynamic monitoring of sweat alcohol 基于金纳米颗粒和碳纳米管网络的无创酒精生物传感器动态监测汗液酒精
IF 4.8 2区 化学
Bioelectrochemistry Pub Date : 2025-02-13 DOI: 10.1016/j.bioelechem.2025.108943
Wenjing Peng , Shan Li , Hui Gao , Mengjie Su , Yaqiu Zhou , Zhengyuan Ding , Qiyu Jiang , Chunmei Yu
{"title":"Non-invasive alcohol biosensor based on gold nanoparticles and carbon nanotubes network for dynamic monitoring of sweat alcohol","authors":"Wenjing Peng ,&nbsp;Shan Li ,&nbsp;Hui Gao ,&nbsp;Mengjie Su ,&nbsp;Yaqiu Zhou ,&nbsp;Zhengyuan Ding ,&nbsp;Qiyu Jiang ,&nbsp;Chunmei Yu","doi":"10.1016/j.bioelechem.2025.108943","DOIUrl":"10.1016/j.bioelechem.2025.108943","url":null,"abstract":"<div><div>Intemperance can lead to health issues or other potential harms to society. Consequently, accurate detection of alcohol concentration in human fluid is an essential and challenging task. In this paper, we reported an efficient and reliable method for highly sensitive and selective monitoring of alcohol in sweat. This stretchable alcohol biosensor has been fabricated by transferring multi-walled carbon nanotubes (MWCNTs) film on polydimethylsiloxane (PDMS) substrate followed by immobilization of Au nanoparticles (AuNPs) and alcohol oxidase enzyme (AOx). The biosensor possesses satisfactory mechanical stability, including excellent resistance to stretching, bending and twisting. Sandwich structure formed on the electrode surface by MWCNTs and AuNPs provides excellent electrical conductivity and electrochemical performance for biosensors. The biosensor exhibited a wide linear range from 1.5 μM to 30 mM toward alcohol and the detection limit was 0.5 μM. Furthermore, owing to the specificity of the AOx, the biosensor displayed splendid selectivity. The real sample tests show that the constructed biosensor has the ability to monitor sweat alcohol, and the results were consistent with those obtained by gas chromatography. This research offers a versatile method for the development of flexible electrochemical biosensors, which has promising applications in noninvasive and accurate detection of alcohol in human sweat.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"164 ","pages":"Article 108943"},"PeriodicalIF":4.8,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143428704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bystander effect of metal byproducts released from electroporated cells after electroporation in vitro 体外电穿孔细胞释放金属副产物的旁观者效应
IF 4.8 2区 化学
Bioelectrochemistry Pub Date : 2025-02-12 DOI: 10.1016/j.bioelechem.2025.108940
Alenka Maček Lebar , Tjaša Potočnik , Janez Ščančar , Stefan Marković , Tamara Polajžer
{"title":"Bystander effect of metal byproducts released from electroporated cells after electroporation in vitro","authors":"Alenka Maček Lebar ,&nbsp;Tjaša Potočnik ,&nbsp;Janez Ščančar ,&nbsp;Stefan Marković ,&nbsp;Tamara Polajžer","doi":"10.1016/j.bioelechem.2025.108940","DOIUrl":"10.1016/j.bioelechem.2025.108940","url":null,"abstract":"<div><div>Electrodes dissolution during electroporation releases metal ions into the medium, altering the microenvironment of electroporated cells and allowing metal ions to penetrate cell membrane. During cell membrane repair, homeostasis restoration or activation of cell death pathways, cells eliminate excess metals from the cytoplasm and membrane. This study assessed the effects of post-electroporation metal byproducts on untreated (non-electroporated) cells <em>in vitro</em>.</div><div>CHO and HCT116 cells were electroporated with three pulse protocols (unipolar: 100 μs, 5 ms; bipolar: 2 μs) using either aluminum or stainless-steel electrodes. After electroporation, cells were transferred to fresh growth medium and incubated for 2 or 4 h. Incubation period allowed either cell recovery or the activation of cell death pathways, leading to the accumulation of metal byproducts in the incubation medium.</div><div>Stainless-steel electrodes with the 5 ms pulse protocol caused a considerable increase in iron, chromium and nickel ions in incubation medium compared to aluminum electrodes or other protocols. Metal ions in incubation medium caused toxicity in non-electroporated cells, disrupting cell cycle function or inducing cell death. The observed toxicity results from combined effects of metal ions on cellular functions and the mechanisms the cells use to protect themselves from metal overload.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"164 ","pages":"Article 108940"},"PeriodicalIF":4.8,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrodeposition of carbon nanotubes and conjugation of arginyl-glycyl-aspartic acid for the following of glioblastoma cells on bionanocomposites 电沉积碳纳米管及精氨酸-甘氨酸-天冬氨酸在生物纳米复合材料上对胶质母细胞瘤细胞的结合
IF 4.8 2区 化学
Bioelectrochemistry Pub Date : 2025-02-07 DOI: 10.1016/j.bioelechem.2025.108937
Belguzar Karadag, Simge Er Zeybekler, Sultan Sacide Gelen, Leila Sabour-Takanlou, Maryam Sabour-Takanlou, Cigir Biray Avci, Dilek Odaci
{"title":"Electrodeposition of carbon nanotubes and conjugation of arginyl-glycyl-aspartic acid for the following of glioblastoma cells on bionanocomposites","authors":"Belguzar Karadag,&nbsp;Simge Er Zeybekler,&nbsp;Sultan Sacide Gelen,&nbsp;Leila Sabour-Takanlou,&nbsp;Maryam Sabour-Takanlou,&nbsp;Cigir Biray Avci,&nbsp;Dilek Odaci","doi":"10.1016/j.bioelechem.2025.108937","DOIUrl":"10.1016/j.bioelechem.2025.108937","url":null,"abstract":"<div><div>The improvement of surface treatment methods that permit the tuning of cell adhesion on the surface of biomaterials and devices is of considerable importance. Here, multi-walled carbon nanotubes (MWCNT) were modified with 4-aminothiophenol (4ATP). Then, electrodeposition of MWCNT-4ATP was carried out on 4ATP-modified screen-printed gold electrodes (SP-Au). After conjugation of Arginyl-glycyl-aspartic acid <strong>(</strong>RGD)-peptide on Poly(MWCNT-4ATP), the adhesion of U-87MG glioblastoma cells was examined by differential pulse voltammetry (DPV) technique. The synthesized MWCNT-4ATP and the obtained Poly(MWCNT-4ATP)/RGD surfaces were characterized using Scanning Electron Microscopy-Energy Dispersive X-Ray Spectrometer (SEM-EDS), Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-Ray Photoelectron Spectrometer (XPS). The linear range for U-87MG glioblastoma cells was 10<sup>2</sup>–10<sup>6</sup> cells/mL. The developed Poly(MWCNT-4ATP)/RGD cell adhesion platform provided monitoring of U-87MG glioblastoma cells using DPV technique and fluorescent imaging.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"164 ","pages":"Article 108937"},"PeriodicalIF":4.8,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143378938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信