{"title":"Non-invasive alcohol biosensor based on gold nanoparticles and carbon nanotubes network for dynamic monitoring of sweat alcohol","authors":"Wenjing Peng , Shan Li , Hui Gao , Mengjie Su , Yaqiu Zhou , Zhengyuan Ding , Qiyu Jiang , Chunmei Yu","doi":"10.1016/j.bioelechem.2025.108943","DOIUrl":null,"url":null,"abstract":"<div><div>Intemperance can lead to health issues or other potential harms to society. Consequently, accurate detection of alcohol concentration in human fluid is an essential and challenging task. In this paper, we reported an efficient and reliable method for highly sensitive and selective monitoring of alcohol in sweat. This stretchable alcohol biosensor has been fabricated by transferring multi-walled carbon nanotubes (MWCNTs) film on polydimethylsiloxane (PDMS) substrate followed by immobilization of Au nanoparticles (AuNPs) and alcohol oxidase enzyme (AOx). The biosensor possesses satisfactory mechanical stability, including excellent resistance to stretching, bending and twisting. Sandwich structure formed on the electrode surface by MWCNTs and AuNPs provides excellent electrical conductivity and electrochemical performance for biosensors. The biosensor exhibited a wide linear range from 1.5 μM to 30 mM toward alcohol and the detection limit was 0.5 μM. Furthermore, owing to the specificity of the AOx, the biosensor displayed splendid selectivity. The real sample tests show that the constructed biosensor has the ability to monitor sweat alcohol, and the results were consistent with those obtained by gas chromatography. This research offers a versatile method for the development of flexible electrochemical biosensors, which has promising applications in noninvasive and accurate detection of alcohol in human sweat.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"164 ","pages":"Article 108943"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425000465","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intemperance can lead to health issues or other potential harms to society. Consequently, accurate detection of alcohol concentration in human fluid is an essential and challenging task. In this paper, we reported an efficient and reliable method for highly sensitive and selective monitoring of alcohol in sweat. This stretchable alcohol biosensor has been fabricated by transferring multi-walled carbon nanotubes (MWCNTs) film on polydimethylsiloxane (PDMS) substrate followed by immobilization of Au nanoparticles (AuNPs) and alcohol oxidase enzyme (AOx). The biosensor possesses satisfactory mechanical stability, including excellent resistance to stretching, bending and twisting. Sandwich structure formed on the electrode surface by MWCNTs and AuNPs provides excellent electrical conductivity and electrochemical performance for biosensors. The biosensor exhibited a wide linear range from 1.5 μM to 30 mM toward alcohol and the detection limit was 0.5 μM. Furthermore, owing to the specificity of the AOx, the biosensor displayed splendid selectivity. The real sample tests show that the constructed biosensor has the ability to monitor sweat alcohol, and the results were consistent with those obtained by gas chromatography. This research offers a versatile method for the development of flexible electrochemical biosensors, which has promising applications in noninvasive and accurate detection of alcohol in human sweat.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.